b) (12x-5)*(3x-1)-36x^2-=6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.




\(a+b+c=0\Rightarrow\left(a+b+c\right)^2=0\Rightarrow a^2+b^2+c^2+2\left(ab+ac+ab\right)=0\)
\(\Rightarrow ab+ac+bc=-7\Rightarrow\left(ab+ac+bc\right)^2=a^2b^2+a^2c^2+b^2c^2+a^2bc+ab^2c+abc^2=49\)
\(\Rightarrow a^2b^2+b^2c^2+c^2a^2+abc\left(a+b+c\right)=49\)
\(\Rightarrow a^2b^2+b^2c^2+c^2a^2=49\)
\(a^2+b^2+c^2=14\Rightarrow\left(a^2+b^2+c^2\right)^2=196\Rightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=196\)
\(\Rightarrow a^4+b^4+c^4+2.49=196\)
\(\Rightarrow a^4+b^4+c^4=98\)
\(a+b+c=0\Leftrightarrow a=b+c\)
\(\Leftrightarrow a^2=\left(b+c\right)^2=b^2+2bc+c^2\)
\(\Leftrightarrow a^2-b^2-c^2=2bc\)
\(\Leftrightarrow\left(a^2-b^2-c^2\right)^2=\left(2bc\right)^2\)
\(\Leftrightarrow a^4+b^4+c^4-2a^2b^2+2b^2c^2-2c^2a^2=4b^2c^2 \)
\(\Leftrightarrow a^4+b^4+c^4=2a^2b^2+2b^2c^2+2c^2a^2\)
\(\Leftrightarrow2\left(a^4+b^4+c^4\right)=a^4+b^4+c^4+2a^2b^2+2b^2c^2+2c^2a^2=\left(a^2+b^2+c^2\right)^2=14^2=196\)
\(\Leftrightarrow a^4+b^4+c^4=\frac{196}{2}=98\)


Binh phương a+b+c=0
Ta có\(a^2+b^2+c^2+2ab+2ab+2bc=0\)
mà\(ab+ac+bc=0\)
=>\(a^2+b^2+c^2=0\)
theo bất đẳng Cauchy ta có \(a^2+b^2+c^2 \) > \(ab+ac+bc\)
mà \(a^2+b^2+c^2=ab+ac+bc=0\)
Dấu"=" xảy ra khi và chỉ ra \(a=b=c\)
mà \(a+b+c=0(giả thiết)\)
=>\(a=b=c=0\)
=> P= \((0-1)^{2017}+0^{2018}+(0+1)^{2019}\)=0
Vậy P=0
theo đề ra ta có \(\left(a+b+c\right)^2=0^2\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)=0\)
thay ab+bc+ac=0 vào ta được \(a^2+b^2+c^2=0\Rightarrow\hept{\begin{cases}b=0\\a=0\\c=0\end{cases}}\)vì\(\hept{\begin{cases}a^2\ge0\\b^2\ge0\\c^2\ge0\end{cases}}\)
bạn tự thay vào tính nhé

\(P=\left(x+8\right)^2+\left(x+4\right)^2\)
\(P=x^2+16x+64+x^2+8x+16\)
\(P=2x^2+24x+80=2\left(x^2+12x+40\right)\)
Ta có: \(x^2+12x+40=\left(x^2+2.x.6+36\right)+4=\left(x+6\right)^2+4\)
Thấy \(\left(x+6\right)^2\ge0\forall x\Rightarrow x^2+12x+40\ge4\)
\(\Rightarrow P=2\left(x^2+12x+40\right)\ge2.4=8\)
Vậy Min P=8, dấu = xảy ra khi và chỉ khi x = -6.
giúp mik nha^^