Tính \(\sqrt[4]{17+12\sqrt{2}}-\sqrt{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nhận xét: \(\left(n+1\right)\sqrt{n}=\sqrt{\left(n+1\right)^2n}=\sqrt{\left(n+1\right)n\left(n+1\right)};n\sqrt{n+1}=\sqrt{n^2\left(n+1\right)}=\sqrt{n.n\left(n+1\right)}\)
=> \(\left(n+1\right)\sqrt{n}>n\sqrt{n+1}\) => \(2.\left(n+1\right)\sqrt{n}>\left(n+1\right)\sqrt{n}+n\sqrt{n+1}\)
=> \(\frac{2}{2.\left(n+1\right)\sqrt{n}}<\frac{2}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{2}{\sqrt{n\left(n+1\right)}.\left(\sqrt{n+1}+\sqrt{n}\right)}\)
=> \(\frac{1}{\left(n+1\right)\sqrt{n}}<\frac{2\left(\sqrt{n+1}-\sqrt{n}\right)}{\sqrt{n\left(n+1\right)}.\left(\left(\sqrt{n+1}\right)^2-\left(\sqrt{n}\right)^2\right)}=2.\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)
Áp dụng ta có:
\(\frac{1}{2\sqrt{1}}<2.\left(\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}\right)\)
....
\(\frac{1}{3\sqrt{2}}<2.\left(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}\right)\)
\(\frac{1}{\left(n+1\right)\sqrt{n}}<2.\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)
=> A < \(2\left(\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)=2\left(1-\frac{1}{\sqrt{n+1}}\right)<2\)
Vậy A < 2
Ta có:
\(\frac{1}{\left(n-1\right)\sqrt{n}}=\frac{\sqrt{n}}{n\left(n+1\right)}=\sqrt{n}\left(\frac{1}{n}-\frac{1}{n+1}\right)=\sqrt{n}\left(\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n+1}}\right)\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)\(=\left(1+\frac{\sqrt{n}}{\sqrt{n+1}}\right)\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)<2\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)
Dễ dàng giải tiếp bài toán
*)Nếu x>0
=>3x+2ax=3a-1
=>3a-2ax=3x+1
=>a(3-2x)=3x+1
=>a=(3x+1)/(3-2x)
*)Nếu x<0
=>-3x-2ax=3a-1
=>1-3x=3a+2ax
=>1-3x/3+2x=a
Để PT có 1 nghiệm duy nhất thì 3x+1/3-2x=1-3x/3+2x
giải ra là ok
@Ta chứng minh \(2,5<\sqrt{6+\sqrt{6+\sqrt{6+...}}}\)\(<3\) bằng quy nạp.
+Với n = 1, 2, 3 thì điều trên đúng.
+Giả sử điều trên đúng với n = k ( k≥1 ), tức là \(2,5<\sqrt{6+\sqrt{6+...}}\)\(<3\) với k dấu căn.
+Ta chứng minh điều đó đúng với n = k+1 tức là \(2,5<\sqrt{6+\sqrt{6+...}}\)\(<3\) với k+1 dấu căn
Thật vậy, ta có: \(2,5<\sqrt{6+\sqrt{6+...}}\text{(k dấu căn) }<3\)
\(\Rightarrow8,5<6+\sqrt{6+\sqrt{6+...}}\text{ (k dấu căn) }<9\)
\(\Rightarrow\sqrt{8,5}<\sqrt{6+\sqrt{6+\sqrt{6+...}}}\text{ (k+1 dấu căn)}<3\)
\(\Rightarrow2,5<\sqrt{6+\sqrt{6+..}}\left(k+1\text{ dấu căn}\right)<3\)
Vậy \(2,5<\sqrt{6+\sqrt{6+\sqrt{...}}}<3\)
@Chứng minh tương tự ta cũng có: \(1,5<\sqrt[3]{6+\sqrt[3]{6+\sqrt[3]{...}}}<2\)
Vậy \(2,5+1,5<\)\(\sqrt{...}+\sqrt[3]{...}<3+2\)
\(\Rightarrow4<\)\(\sqrt{...}+\sqrt[3]{....}<\)\(5\)
Vậy phần nguyên là 4.
a/
Ta có: \(c.a=-m^2+m-2=-\left(m-\frac{1}{2}\right)^2-\frac{7}{4}<\)\(0\) với mọi số thực m.
=> pt luôn có 2 nghiệm trái dấu
b/
Theo Viet: \(x_1+x_2=m-1;\text{ }x_1.x_2=-m^2+m-2\)
\(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=\left(m-1\right)^2-2\left(-m^2+m-2\right)=3m^2-4m+5\)
\(=3\left(m^2-\frac{4}{3}m\right)+5=3\left(m^2-2.m.\frac{2}{3}+\frac{4}{9}\right)+5-3.\frac{4}{9}\)
\(=3\left(m-\frac{2}{3}\right)^2+\frac{11}{3}\ge\frac{11}{3}\)
Dấu "=" xảy ra khi m = 2/3.
Vậy GTNN của x2+y2 là 11/3.
c/\(x_1=2x_2\)
\(m-1=x_1+x_2=2x_2+x_2=3x_2\Rightarrow x_2=\frac{m-1}{3}\)
\(\Rightarrow x_1=2x_2=\frac{2}{3}\left(m-1\right)\)
\(x_1.x_2=-m^2+m-2\Rightarrow\frac{1}{3}\left(m-1\right).\frac{2}{3}\left(m-1\right)=-m^2+m-2\)
\(\Leftrightarrow2\left(m-1\right)^2=9\left[-\left(m-\frac{1}{2}\right)^2-\frac{7}{4}\right]\)
Pt trên vô nghiệm do \(VT\ge0>VP\)
Vậy không tồn tại m để......
Lưu ý câu c: ở trên là form làm bài dạng này chung, tuy nhiên, ở bài này ta thấy ngay không tồn tại m.
Do x1 và x2 trái dấu với mọi m
Nên x1 ≠ x2 với mọi m.
Cho phương trình x2 – mx + m2 -5 =0 (1) với m là tham số
1.Tìm m để phương trình có hai nghiệm trái dấu.
2. Với những giá trị của m mà phương trình có nghiệm. Hãy tìm giá trị lớn nhất và nhỏ nhất trong tất cả các nghiệm đó.
Gọi thời gian ô tô đã đi đến khi ô tô cách đều xe đạp và xe máy là x (giờ)
Vì xe đạp đi trước ô tô 2 giờ nên Thời gian xe đạp đã đi là x + 2 (giờ)
Thời gian xe mãy đã đi là: x + 1 ( giờ)
Quãng đường ô tô đi là 50.x km ; xe máy đã đi là 30. (x +1) km; xe đạp đã đi là 10(x + 2) km
Vì ô tô cách đều xe đap và xe máy nên
quãng đường ô tô đi nhiều hơn xe đạp = quãng đường xe máy đi nhiều hơn ô tô
=> 50x - 10(x +2) = 30(x +2) - 50x
=> 40x - 20 = - 20x + 60
=> 40x + 20x = 20 + 60
=> 60x = 80 => x = 4/3 giờ = 1 giờ 20 phút
Vậy đến 10 giờ + 1 giờ 20 phút = 11 giờ 20 phút thì ô tô cách đều xe đạp và xe máy
làm tiếp nè:
\(\left|\sqrt{x-1}-2\right|+\left|\sqrt{x-1}-3\right|\)
*)Nếu \(\sqrt{x-1}\)>3<=>x-1>9<=>x>10 thì \(\sqrt{x-1}\)-2>0 \(\sqrt{x-1}\)-3>0
Ta có:|\(\sqrt{x-1}\)-2|+|\(\sqrt{x-1}\)-3|=\(\sqrt{x-1}\)-2+\(\sqrt{x-1}\)-3=2\(\sqrt{x-1}\)-5
*)Nếu 2<\(\sqrt{x-1}\)<3<=>4<x-1<9... làm tiếp đi bận mất rồi
\(\sqrt{x+3-4\sqrt{x-1}}+\sqrt{x+8-6\sqrt{x-1}}\) có ĐKXĐ là x>=1
\(=\sqrt{\left(x-1\right)-4\sqrt{x-1}+4}+\sqrt{\left(x-1\right)-6\sqrt{x-1}+9}\)
\(=\sqrt{\sqrt{x-1}^2-4\sqrt{x-1}+2^2}+\sqrt{\sqrt{x-1}^2-6\sqrt{x-1}+3^2}\)
\(=\sqrt{\left(\sqrt{x-1}-2\right)^2}+\sqrt{\left(\sqrt{x-1}-3\right)^2}\)
\(=\left(\sqrt{x-1}-2\right)+\left(\sqrt{x-1}-3\right)=2\sqrt{x-1}-5\) với x>5
\(=-\left(\sqrt{x-1}-2\right)-\left(\sqrt{x-1}-3\right)=-2\sqrt{x-1}+5\) với x<5
A = \(\sqrt[4]{3^2+2.3.\left(2\sqrt{2}\right)+\left(2\sqrt{2}\right)^2}-\sqrt{2}=\sqrt[4]{\left(3+2\sqrt{2}\right)^2}-\sqrt{2}\)
A = \(\sqrt{3+2\sqrt{2}}-\sqrt{2}=\sqrt{\left(\sqrt{2}\right)^2+2\sqrt{2}.1+1}-\sqrt{2}=\sqrt{\left(\sqrt{2}+1\right)^2}-\sqrt{2}\)
A = \(\sqrt{2}+1-\sqrt{2}=1\)
\(\sqrt[4]{\left(3+2\sqrt{2}\right)^2}-\sqrt{2}=\sqrt{3+2\sqrt{2}}-\sqrt{2}=\sqrt{\left(1+\sqrt{2}\right)^2}-\sqrt{2}=\sqrt{2}+1-\sqrt{2}=1\)