Cho x, y là các số thực thỏa mãn \(x^2+y^2-xy=1\).. Chứng minh rằng:
\(x^4+y^4-x^2y^2\ge\frac{1}{9}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho x, y là các số thực thỏa mãn \(x^2+y^2-xy=1\).. Chứng minh rằng:
\(x^4+y^4-x^2y^2\ge\frac{1}{9}\)
Ta có: \(\frac{P}{4}=\frac{2x^2-xy-y^2}{x^2+2xy+3y^2}\)
Xét x=0 =>...
Xét x#0 chia cả tử và mẫu cho x2 rồi đặt \(t=\frac{y}{x}\)
Delta=....
A B C E D H M K H
a) Xét tứ giác ADHE có:
\(\widehat{AEH}+\widehat{ADH}=90^o+90^o=180^o\)
=> tứ giác ADHE nội tiếp đường tròn đường kính AH.
b) hơi khó, mình chịu thôi, nhưng chỉ cần CM góc HED = góc EAM là mình sẽ làm được.
b)Áp dụng BĐT AM-GM ta có:
\(\frac{a^3}{a^2+b^2}=a-\frac{ab^2}{a^2+b^2}\ge a-\frac{ab^2}{2ab}=a-\frac{b}{2}\)
Tương tự cho 2 BĐT còn lại ta cũng có:
\(\frac{b^3}{b^2+c^2}\ge b-\frac{c}{2};\frac{c^3}{c^2+a^2}\ge c-\frac{a}{2}\)
Cộng theo vế 3 BĐT trên ta có:
\(VT\ge a+b+c-\frac{a+b+c}{2}=\frac{a+b+c}{2}=VP\)
Đẳng thức xảy ra khi \(a=b=c\)
Câu b
xét \(\frac{a^3}{a^2+b^2}=a-\frac{ab^2}{a^2+b^2}\ge a-\frac{ab^2}{2ab}=a-\frac{b}{2}\)
chứng minh tương tự và cộng 3 bất đẳng thức ta có:
\(\frac{a^3}{a^2+b^2}+\frac{b^3}{c^2+b^2}+\frac{c^3}{c^2+a^2}\ge a+b+c-\frac{a}{2}-\frac{b}{2}-\frac{c}{2}=\frac{a+b+c}{2}\)
Câu a:
để a là số chính phương thì \(4x^2+8x+21=k^2\left(k\in N\right)\)\(\Leftrightarrow\left(2x+1\right)^2+20=k^2\Leftrightarrow\left(k+2x+1\right)\left(k-2x-1\right)=20\)
do đó \(k+2x+1\)và \(k-2x-1\)là ước của 20 nên ta có :
Cho a,b,c là những số dương abc=1. Tìm GTLN của P\(=\frac{1}{a^2+2b^2+3}+\frac{1}{b^2+2c^2+3}+\frac{1}{c^2+2a^2+3}\)
\(\frac{1}{a^2+2b^2+3}=\frac{1}{\left(a^2+b^2\right)+b^2+1+2}\le\frac{1}{2}\left(\frac{1}{ab+b+1}\right)\)
tương tự với những cái còn lại, ta sẽ đc 1 bài quen thuộc
đặt x2 + y2 = a; xy = b. khi đó a - b = 1 hay a = b + 1.
ta phải chứng minh x4 + y4 - x2y2 \(\ge\)\(\frac{1}{9}\)hay a2 - 3b2 \(\ge\)\(\frac{1}{9}\) (1)
thế a = b + 1 vào (1) ta được 9b2 - 9b - 4 \(\le\)0 hay (3b + 1)(3b - 4) \(\le\)0 hay \(\frac{-1}{3}\le b\le\frac{4}{3}\)
ta sẽ chứng minh \(\frac{-1}{3}\le b\le\frac{4}{3}\).
thật vậy
ta có x2 + y2\(\ge\)2xy nên từ giả thiết suy ra xy \(\le\) 1 hay b \(\le\)1 nên b \(\le\)\(\frac{4}{3}\)
mặt khác từ giả thiết ta có (x + y)2 - 3xy = 1 nên 3xy + 1 = (x + y)2\(\ge\)0 hay xy \(\ge\)\(\frac{-1}{3}\)hay b \(\ge\)\(\frac{-1}{3}\)
từ đó suy ra đpcm.