giải phương trình hộ nhé
\(\frac{x+2}{2008}+\frac{x+3}{2007}+\frac{x+4}{2006}+\frac{x+2028}{6}=0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2+3x-10=0\Leftrightarrow x^2+5x-2x-10=0\)
\(\Leftrightarrow x\left(x+5\right)-2\left(x+5\right)=0\Leftrightarrow\left(x-2\right)\left(x+5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x+5=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=2\\x=-5\end{cases}}\)
Tập nghiệm của phương trình: \(S=\left\{2;-5\right\}\)
\(x^2+3x-10=0\)
\(\Leftrightarrow x^2+5x-2x-10=0\)
\(\Leftrightarrow x\left(x+5\right)-2\left(x+5\right)=0\)
\(\Leftrightarrow\left(x+5\right)\left(x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+5=0\\x-2=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-5\\x=2\end{cases}}\)
Vậy: \(S=\left\{-5;2\right\}\)
=.= hk tốt!!
\(x^3-2x^2-x-6=0\)
\(\Rightarrow x^2\left(x-2\right)-\left(x-2\right)=8\)
\(\Rightarrow\left(x-2\right)\left(x^2-1\right)=8\)
\(\Rightarrow\left(x-1\right)\left(x+1\right)\left(x-2\right)=8\)
tự làm tiếp nha
Forever Miss You làm sai nhé ! x có phải là số nguyên đâu mà bước cuối định lập bảng ước ?
\(x^3-2x^2-x-6=0\)
\(\Leftrightarrow x^3-3x^2+x^2-3x+2x-6=0\)
\(\Leftrightarrow x^2\left(x-3\right)+x\left(x-3\right)+2\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x^2+x+2\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left[\left(x+\frac{1}{2}\right)^2+\frac{7}{4}\right]=0\)
Vì [....] > 0 V x
=> x - 3 = 0
<=> x = 3
Bài này thiếu đề rồi bạn !
P/S : Chúc mừng năm mới !!!
B C A D M N E E
Trên ta BN lấy điểm E sao cho N là trung điểm của BE .
\(\Delta NBC\)và \(\Delta NED\) có :
NC = ND ( gt )
\(\widehat{BNC}=\widehat{DNE}\)( hai góc đối đỉnh )
NB = NE ( theo cách vẽ ) .
Do đó \(\Delta NBC=\Delta NED\)( c.g.c ) , suy ra DE = BC .
Theo giả thiết MN = \(\frac{AD+BC}{2}\), vì thế suy ra MN = \(\frac{AD+DE}{2}\) (1)
Mặt khác trong tam giác ABE thì MN là đường trung bình của tam giá đó nên MN = \(\frac{AE}{2}\). (2)
Từ (1) và (2) suy ra : AE = AD + DE . Đẳng thức này chỉ xảy ra khi ba điểm A,D,E thẳng hàng .
Lại do \(\Delta NBC\)= \(\Delta NED\)nên \(\widehat{BCD}=\widehat{EDC}\)do đó DE // BC ( hai góc ở vị trí so le trong bằng nhau ) , từ đó suy ra AD // BC.
Vậy tứ giác ABCD là hình thang ( đpcm ).
Gọi chiều dài ban đầu là a (m), chiều rộng ban đầu là b (m) \(\left(0< a;b< 20\right)\)
Theo bài ra, ta có:
\(\hept{\begin{cases}a+b=20\\ab-\left(a+3\right)\left(b-5\right)=43\end{cases}}\Leftrightarrow\hept{\begin{cases}3a+3b=60\\ab-\left(ab-5a+3b-15\right)=43\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}3a+3b=60\\5a-3b=28\end{cases}}\Leftrightarrow\hept{\begin{cases}8a=88\\3a+3b=60\end{cases}}\Leftrightarrow\hept{\begin{cases}a=11\\b=9\end{cases}}\) (thỏa mãn)
Vậy chiều dài ban đầu là 11 m và chiều rộng ban đầu là 9 m
\(PT< =>x^4+5x^3-6x^2-6x+5x^2-6x-6=0\)
\(< =>x^4+5x^3-x^2-12x-6=0\)
\(< =>\left(x^2-x-1\right)\left(x^2+6x+6\right)=0\)
<=>\(\orbr{\begin{cases}x=\frac{1+\sqrt{5}}{2}\\x=\frac{1-\sqrt{5}}{2}\end{cases}}\)hay \(\orbr{\begin{cases}x=-3+\sqrt{3}\\x=-3-\sqrt{3}\end{cases}}\)
Vậy \(S=\left\{\frac{1+\sqrt{5}}{2};\frac{1-\sqrt{5}}{2};-3+\sqrt{3};-3-\sqrt{3}\right\}\)
3 hạng tử đầu , mỗi hạng tử cùng cộng 1
Hạng tử cuối trừ 3
Nhân tử chung : x + 2010
\(\frac{x+2}{2008}+\frac{x+3}{2007}+\frac{x+4}{2006}+\frac{x+2028}{6}=0\)
\(\Leftrightarrow\left(\frac{x+2}{2008}+1\right)+\left(\frac{x+3}{2007}+1\right)+\left(\frac{x+4}{2006}+1\right)+\left(\frac{x+2028}{6}-3\right)=0\)
\(\Leftrightarrow\frac{x+2010}{2008}+\frac{x+2010}{2007}+\frac{x+2010}{2006}+\frac{x+2010}{6}=0\)
\(\Leftrightarrow\left(x+2010\right)\left(\frac{1}{2008}+\frac{1}{2007}+\frac{1}{2006}+\frac{1}{6}\right)=0\)
\(\Rightarrow x+2010=0\Leftrightarrow x=-2010\)