K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 6 2017

? khó quá bn ơi !

mk ko bít

ko bít ko bít ko bít

chuk may mắn

2 tháng 6 2017
  1. \(\sqrt{\sqrt{5}^2-2.2\sqrt{5}+4}-\sqrt{5}=\sqrt{\left(\sqrt{5}-2\right)^2}-\sqrt{5}=\sqrt{5}-2-\sqrt{5}=-2\left(dpcm\right)\)
  2. \(\sqrt{23+8\sqrt{7}}-\sqrt{7}=\sqrt{\sqrt{7}^2+2.4\sqrt{7}+16}-\sqrt{7}\)\(=\sqrt{\left(\sqrt{7}+4\right)^2}-\sqrt{7}=\sqrt{7}+4-\sqrt{7}=4\left(DPCM\right)\)
2 tháng 6 2017

Câu hỏi của Minh Hà Tuấn - Toán lớp 9 - Học toán với OnlineMath

2 tháng 6 2017

ĐK  \(x\ge0,x\ge1,x\ge-1\)

=(\(\frac{2x+1}{x+\sqrt{x}}-\frac{\sqrt{x}+2}{\sqrt{x}+1}\) ) . \(\frac{\sqrt{x}+1}{\sqrt{x}-1}\)

= ( \(\frac{2x+1-\sqrt{x}\left(\sqrt{x}+2\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}\) ) . \(\frac{\sqrt{x}+1}{\sqrt{x}-1}\)

\(\left(\frac{2x+1-x-2\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\right)\) .\(\frac{\sqrt{x}+1}{\sqrt{x}-1}\)

\(\frac{x-2\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}\) . \(\frac{\sqrt{x}+1}{\sqrt{x}-1}\)

=\(\frac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}\left(\sqrt{x}+1\right)}\) .\(\frac{\sqrt{x}+1}{\sqrt{x}-1}\)

=\(\frac{\sqrt{x}-1}{\sqrt{x}}\)

=\(\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{x}\)

=\(\frac{x-\sqrt{x}}{x}\)

3 tháng 6 2017

gọi x(km/h) là vận tốc thật của ô tô đi từ A

gọi y(km/h) là vận tốc thật của ô tô đi từ B

(ĐK: x>y>10)

vì quãng đường dài 220 km và khi 2 ô tô đi ngược chiều sau 2 h thì gặp nhau nên ta có pt: \(x+y=\frac{220}{2}=110\)(1)

vì nếu ô tô đi từ A tăng vận tốc thêm 10 km/h thì gấp đôi vận tốc ô to đi từ B nên ta có pt: \(x+10=2.y\)(=) \(x-2.y=-10\)(2)

từ (1) và (2) ta có hệ pt: \(\hept{\begin{cases}x+y=110\\x-2.y=-10\end{cases}}\)

giải hệ pt ta được x= 70( nhận); y=40(nhận)

vậy vận tốc ô tô đi từ A là: 70 km/h; ô tô đi từ B là: 40 km/h

2 tháng 6 2017

https://diendan.hocmai.vn/threads/toan-9-de-thi-vao-chuyen-quoc-hoc-hue.348002/  chị vào link này nhá , có câu hỏi y hệt đó 

2 tháng 6 2017

\(\hept{\begin{cases}xy+z^2=2\left(1\right)\\yz+x^2=2\left(2\right)\\zx+y^2=2\left(3\right)\end{cases}}\)Lấy 1- 2  ta có \(-y\left(z-x\right)+z^2-x^2=0\Leftrightarrow-y\left(z-x\right)+\left(z+x\right)\left(z-x\right)=0\)

\(\Leftrightarrow\left(z-x\right)\left(z+x-y\right)=0\Leftrightarrow\orbr{\begin{cases}z=x\\y=x+z\end{cases}}\)

TH1: Nếu \(x=z\)thế vào 1 và 3 có \(\hept{\begin{cases}xy+x^2=2\\x^2+y^2=2\end{cases}}\)\(\Rightarrow y^2-xy=0\Leftrightarrow\left(y-x\right)y=0\Leftrightarrow\orbr{\begin{cases}y=0\\x=y\end{cases}}\) 

  • Nếu \(y=x=z\Rightarrow2x^2=2\Leftrightarrow x^2=1\Leftrightarrow\orbr{\begin{cases}x=1\\x=-1\end{cases}}\)
  • Nếu \(y=0\)\(\Rightarrow\hept{\begin{cases}x=z\\x^2=2\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=z=\sqrt{2}\\x=z=-\sqrt{2}\end{cases}}\)

TH2 :Nếu \(y=x+z\)thế vào 1 và 3 có :\(\hept{\begin{cases}\left(x+z\right)x+z^2=2\\xz+\left(z+x\right)^2=2\end{cases}\Leftrightarrow\hept{\begin{cases}x^2+xz+z^2=2\\x^2+3xz+z^2=2\end{cases}}}\)trừ hai vế của phương trình \(2xz=0\Leftrightarrow\orbr{\begin{cases}z=0\\x=0\end{cases}}\)

  • Nếu \(x=0\Rightarrow y=z\Rightarrow z^2=2\Leftrightarrow\orbr{\begin{cases}y=z=\sqrt{2}\\y=z=-\sqrt{2}\end{cases}}\)
  • Nếu \(z=0\Rightarrow y=x\Rightarrow y^2=2\Leftrightarrow\orbr{\begin{cases}x=y=\sqrt{2}\\x=y=-\sqrt{2}\end{cases}}\)

Kết luân : nghiệm của hệ là \(\orbr{\begin{cases}\left(x,y,z\right)=\left(\sqrt{2},0,\sqrt{2}\right)\\\left(x,y,z\right)=\left(-\sqrt{2},0,-\sqrt{2}\right)\end{cases}}\)hoặc \(\orbr{\begin{cases}\left(x,y,z\right)=\left(0,\sqrt{2},\sqrt{2}\right)\\\left(x,y,z\right)=\left(0,-\sqrt{2},-\sqrt{2}\right)\end{cases}}\)hoặc \(\orbr{\begin{cases}\left(x,y,z\right)=\left(\sqrt{2},\sqrt{2},0\right)\\\left(x,y,z\right)=\left(-\sqrt{2},-\sqrt{2},0\right)\end{cases}}\)hoặc \(\orbr{\begin{cases}\left(x,y,z\right)=\left(1,1,1\right)\\\left(x,y,z\right)=\left(-1,-1,-1\right)\end{cases}}\)