Cho ΔABC nhọn (AB<AC). Đường cao AD, BE, CF cắt nhau ở H.
a) Chứng mình AEHF nội tiếp.
b) Gọi O là trung điểm BC, tia CB và EF cắt nhau ở M. CMR: \(\widehat{\text{FAD}}\) = \(\widehat{\text{OFC}}\) và OC2=OD.OM
c) CMR: MH ⊥ AO.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để chứng minh tứ giác OMAN nội tiếp, ta cần chứng minh tổng hai góc đối nhau bằng 180 độ.
Ta có:
Vậy, góc OAN + góc OMA = 90 độ + 90 độ = 180 độ.
Tương tự, ta cũng có góc MAN + góc MOA = 180 độ.
Vậy, tứ giác OMAN nội tiếp.
Diện tích phần tứ giác nằm ngoài hình tròn là diện tích tam giác OAN trừ đi diện tích phần hình tròn OAN.
Diện tích tam giác OAN = 1/2 * OA * ON = 1/2 * 2R * R = R^2.
Góc AON = 90 độ (vì AN là tiếp tuyến của đường tròn tại N), nên diện tích phần hình tròn OAN = 1/4 * pi * R^2.
Vậy, diện tích phần tứ giác nằm ngoài hình tròn = R^2 - 1/4 * pi * R^2.
Thích bn nhé!
Do xy=1 nên ta biến đối vế trái để bài toán trở thành Chứng minh BĐT sau:
\(\dfrac{4}{\left(x+y\right)^2}-2\dfrac{2}{\left(x+y\right)}\left(x+y\right)+\left(x^2+2xy+y^2\right)+2\ge3\)
Hay: \(\dfrac{4}{\left(x+y\right)^2}-2\dfrac{2}{\left(x+y\right)}\left(x+y\right)+\left(x+y\right)^2\ge1\)
<==> \(\left(\dfrac{2}{x+y}-\left(x+y\right)\right)^2\ge1\) quy đồng mẫu số vế trái:
<==> \(\left(\dfrac{-\left(x^2+y^2\right)}{x+y}\right)^2\ge1\) (do xy=1)
<==> \(\left(\dfrac{\left(x^2+y^2\right)}{x+y}\right)^2\ge1\) (*)
(vì vế trái là Bình phương 1 phân số nên ta có thể bỏ qua dấu âm của tử số).
Xét vế trái của (*):
Áp dụng BĐT Bunhiacopxki cho mẫu số: (x+y) ≤ \(\sqrt{2}\cdot\sqrt{x^2+y^2}\)
(Đẳng thức khi x=y)
Khi đó Vế trái BĐT (*) : \(\left(\dfrac{\left(x^2+y^2\right)}{x+y}\right)^2\ge\left(\dfrac{\left(x^2+y^2\right)}{\sqrt{2\left(x^2+y^2\right)}}\right)^2=\dfrac{\left(x^2+y^2\right)}{2}\) (**)
Áp dụng BĐT Cô sy cho tử số (cả x2 và y2 đều là số dương) ta có:
(x2+y2) ≥ 2xy =2 (do xy=1) Đẳng thức khi x=y. ==> (**) ≥1
Đó chính là Đpcm (*). (Đẳng thức khi x=y=1).
ĐKXĐ: x<>1
Để A là số nguyên thì \(-3⋮x-1\)
=>\(x-1\in\left\{1;-1;3;-3\right\}\)
=>\(x\in\left\{2;0;4;-2\right\}\)
Đại hội đã quy định Quốc kỳ là lá cờ đỏ có ngôi sao vàng 5 cánh ở giữa, Quốc ca là bài “Tiến quân ca”, hai quyết định này đến nay vẫn còn được lưu giữ nguyên vẹn.
a: Xét (O) có
ΔCMD nội tiếp
CD là đường kính
Do đó: ΔCMD vuông tại M
Xét tứ giác NODM có \(\widehat{NOD}+\widehat{NMD}=90^0+90^0=180^0\)
nên NODM là tứ giác nội tiếp
b: Xét (O) có CD,AB là các đường kính và CD\(\perp\)AB
nên \(sđ\stackrel\frown{AC}=sđ\stackrel\frown{CB}=sđ\stackrel\frown{AD}=sđ\stackrel\frown{BD}=90^0\)
Xét (O) có \(\widehat{MNA}\) là góc có đỉnh trong đường tròn chắn hai cung AM,CB
nên \(\widehat{MNA}=\dfrac{1}{2}\left(sđ\stackrel\frown{AM}+sđ\stackrel\frown{CB}\right)\)
=>\(\widehat{MNA}=\dfrac{1}{2}\cdot\left(sđ\stackrel\frown{AM}+sđ\stackrel\frown{AC}\right)=\dfrac{1}{2}\cdot sđ\stackrel\frown{MC}\left(1\right)\)
Xét (O) có
\(\widehat{MBC}\) là góc nội tiếp chắn cung MC
nên \(\widehat{MBC}=\dfrac{1}{2}\cdot sđ\stackrel\frown{MC}\left(2\right)\)
Từ (1) và (2) suy ra \(\widehat{MNA}=\widehat{MBC}\)
a: Xét tứ giác AEHF có \(\widehat{AEH}+\widehat{AFH}=90^0+90^0=180^0\)
nên AEHF là tứ giác nội tiếp
b: Ta có; ΔFBC vuông tại F
mà FO là đường trung tuyến
nên OF=OC
=>ΔOFC cân tại O
=>\(\widehat{OFC}=\widehat{OCF}\)
mà \(\widehat{OCF}=\widehat{BAD}\left(=90^0-\widehat{ABC}\right)\)
nên \(\widehat{OFC}=\widehat{BAD}\)
c) Gọi J là trung điểm OH. Vẽ đường tròn đường kính OH. Khi đó vì \(\widehat{ODH}=90^o\) nên \(D\in\left(J\right)\). Vẽ đường tròn (BC)
Xét tam giác AEH và ADC, ta có: \(\widehat{AEH}=\widehat{ADC}=90^o\) và \(\widehat{HAC}\) chung \(\Rightarrow\Delta AEH\sim\Delta ADC\)
\(\Rightarrow\dfrac{AE}{AD}=\dfrac{AH}{AC}\)
\(\Rightarrow AE.AC=AD.AH\)
\(\Rightarrow P_{A/\left(O\right)}=P_{A/\left(J\right)}\)
\(\Rightarrow\) A nằm trên trục đẳng phương của (O) và (J).
Mặt khác, trong đường tròn (O), ta có: \(\widehat{FOE}=2\widehat{FCE}=\widehat{HCE}+\widehat{HBF}\) \(=\widehat{HDE}+\widehat{HDF}=\widehat{FDE}\) nên tứ FDOE nội tiếp.
\(\Rightarrow\widehat{FOD}=\widehat{FED}\)
Xét tam giác MDE và MFO, ta có:
\(\widehat{MED}=\widehat{MOF},\widehat{EMO}\) chung
\(\Rightarrow\Delta MDE\sim\Delta MFO\left(g.g\right)\)
\(\Rightarrow\dfrac{MD}{MF}=\dfrac{ME}{MO}\)
\(\Rightarrow MD.MO=MF.ME\)
\(\Rightarrow P_{M/\left(J\right)}=P_{M/\left(O\right)}\)
\(\Rightarrow\) M thuộc trục đẳng phương của (J) và (O)
Do đó AM là trục đẳng phương của (O) và (J) \(\Rightarrow AM\perp OJ\) hay \(AM\perp OH\)
Lại có \(AH\perp OM\) nên H là trực tâm tam giác AOM \(\Rightarrow MH\perp AO\) (đpcm)