Bài 2. (1 điểm)
Cho hai vectơ $\overrightarrow{a}$ và $\overrightarrow{b}$ thoả mãn $\left|\overrightarrow{a}+\overrightarrow{b}\right|=\left|\overrightarrow{a}-\overrightarrow{b}\right|$. Chứng minh rằng hai vectơ $\overrightarrow{a}$ và $\overrightarrow{b}$ có giá vuông góc với nhau.
Giả sử \(\overrightarrow{a}\) và \(\overrightarrow{b}\) có giá vuông góc nhau
Ta có hai \(\overrightarrow{a},\overrightarrow{b}\) tạo thành hình chữ nhật có độ dài hai cạnh là a,b
Có: \(\overrightarrow{a}+\overrightarrow{b}=\overrightarrow{c}\) hay \(\overrightarrow{c}\) có phương chiều và độ dài trùng với đường chéo thứ nhất của hình chữ nhật tạo bởi 2 vector trên.
Tương tự lại có: \(\overrightarrow{a}-\overrightarrow{b}=\overrightarrow{d}\) hay \(\overrightarrow{d}\) có phương chiều và độ dài trùng với đường chéo thứ hai của hình chữ nhật tạo bởi 2 vector trên.
Ta có: \(\left|\overrightarrow{a}+\overrightarrow{b}\right|=\left|\overrightarrow{c}\right|\) và \(\left|\overrightarrow{a}-\overrightarrow{b}\right|=\left|\overrightarrow{d}\right|\)
Mà độ dài hai đường chéo hình chữ nhật luôn bằng nhau hay \(\left|\overrightarrow{c}\right|=\left|\overrightarrow{d}\right|\)
\(\Rightarrow\left|\overrightarrow{a}+\overrightarrow{b}\right|=\left|\overrightarrow{a}-\overrightarrow{b}\right|\)
Hay khi \(\left|\overrightarrow{a}+\overrightarrow{b}\right|=\left|\overrightarrow{a}-\overrightarrow{b}\right|\) thì vector \(\overrightarrow{a},\overrightarrow{b}\)có giá vuông góc với nhau
Trên mặt phẳng lấy các điểm A, B, C sao cho \(\overrightarrow{AB}=\overrightarrow{a};\overrightarrow{AC}=\overrightarrow{b}\). Gọi M là trung điểm BC. Khi đó:
\(\overrightarrow{a}+\overrightarrow{b}=\overrightarrow{AB}+\overrightarrow{AC}=2\overrightarrow{AM}\) (quy tắc trung tuyến)
và \(\overrightarrow{a}-\overrightarrow{b}=\overrightarrow{AB}-\overrightarrow{AC}=\overrightarrow{CB}\) (quy tắc 3 điểm)
Do đó \(\left|\overrightarrow{a}+\overrightarrow{b}\right|=\left|\overrightarrow{a}-\overrightarrow{b}\right|\Leftrightarrow\left|2\overrightarrow{AM}\right|=\left|\overrightarrow{CB}\right|\) \(\Leftrightarrow2AM=CB\) hay \(AM=\dfrac{BC}{2}\)
Tam giác ABC có trung tuyến \(AM=\dfrac{BC}{2}\) nên tam giác này vuông tại A. Nói cách khác, nếu 2 vector \(\overrightarrow{a}\) và \(\overrightarrow{b}\) thỏa mãn điều kiện đề bài thì giá của chúng vuông góc với nhau.