Chứng minh rằng: a3 + b3 = (a + b)3 - 3ab (a + b)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`Answer:`
c) \(\frac{2\left(3x+5\right)}{3}-\frac{x}{x}=5-\frac{3\left(x+1\right)}{4}\)
\(\Leftrightarrow\frac{8\left(3x+5\right)}{12}-\frac{6x}{12}=\frac{60}{12}-\frac{9\left(x+1\right)}{12}\)
\(\Rightarrow24x+40-6x=60-9x-9\)
\(\Leftrightarrow24x+9x-6x=60-9-40\)
\(\Leftrightarrow27x=11\)
\(\Leftrightarrow x=\frac{11}{27}\)
d) \(x^2-4x+4\)
\(\Leftrightarrow x^2-2x-2x+4\)
\(\Leftrightarrow x\left(x-2\right)-2\left(x-2\right)\)
\(\Leftrightarrow\left(x-2\right)\left(x-2\right)\)
\(\Leftrightarrow\left(x-2\right)^2\)
e) \(\frac{x-1}{x+2}-\frac{x}{x-2}=\frac{5x-8}{x^2-4}\left(ĐKXĐ:x\ne\pm2\right)\)
\(\Leftrightarrow\frac{x-2}{x+2}-\frac{x}{x-2}=\frac{5x-8}{\left(x+2\right)\left(x-2\right)}\)
\(\Leftrightarrow\frac{\left(x-1\right)\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}-\frac{x\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}=\frac{5x-8}{\left(x+2\right)\left(x-2\right)}\)
\(\Leftrightarrow\left(x-1\right)\left(x-2\right)-x\left(x+2\right)=5x-8\)
\(\Leftrightarrow x^2-2x-x+2-x^2-2x=5x-8\)
\(\Leftrightarrow-5x+2=5x-8\)
\(\Leftrightarrow-10x=-10\)
\(\Leftrightarrow x=1\)
\(a^4+b^4\ge ab^3+ba^3\)
\(\Leftrightarrow a^4+b^4-ab^3-ba^3\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\)(đúng)
Vậy ta có điều phải chứng minh.
`Answer:`
\(4x-\frac{2x-1}{4}\le\frac{3x-2}{6}\)
\(\Leftrightarrow\frac{16x-2x+1}{4}\le\frac{3x-2}{6}\)
\(\Leftrightarrow\frac{14x+1}{4}\le\frac{3x-2}{6}\)
\(\Leftrightarrow3.\left(14x+1\right)\le2.\left(3x-2\right)\)
\(\Leftrightarrow42x+3\le6x-4\)
\(\Leftrightarrow42x-6x\le-4-3\)
\(\Leftrightarrow36x\le-7\)
\(\Leftrightarrow x\le-\frac{7}{36}\)
\(4x\left(3x-2\right)=4-6x\)\(\Leftrightarrow4x\left(3x-2\right)+6x-4=0\)\(\Leftrightarrow4x\left(3x-2\right)+2\left(3x-2\right)=0\)\(\Leftrightarrow2\left(3x-2\right)\left(2x+1\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}3x-2=0\\2x+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{2}{3}\\x=-\frac{1}{2}\end{cases}}\)
Vậy tập nghiệm của pt đã cho là \(S=\left\{-\frac{1}{2};\frac{2}{3}\right\}\)
`Answer:`
Ta có vế phải: `(a+b)^3 -3ab.(a+b)`
`=(a^3 +3a^2 b+3ab^2 +b^3)-(3a^2 b+3ab^2)`
`=a^3+3a^2 b+3ab^2 +b^3 -3a^2 b-3ab^2`
`=a^3 +b^3 +(3a^2 b-3a^2 b)+(3ab^2 -3ab^2)`
`=a^3+b^3`
`=` Vế trái
Vậy `a^3 +b^3 =(a+b)^3 -3ab.(a+b)`