Viết các biểu thức dưới dạng bình phương của một tổng hoặc hiệu:
\(C=4u^4v^8+\left(u^2v^4\right)^4+4\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
( Tự vẽ hình )
a) Xét \(\Delta ABE\)và \(\Delta KCE\)có :
\(\widehat{CEK}=\widehat{BEA}\)( đối đỉnh )
\(CE=EB\left(gt\right)\)
\(\widehat{KCB}=\widehat{CBA}\left(DK//AB\right)\)
\(\Rightarrow\Delta ABE=\Delta KCE\left(g-c-g\right)\left(đpcm\right)\)
b) \(\Rightarrow AE=EK\)
Xét \(\Delta ADK\)có AE = EK \(\Rightarrow DE\)là trung tuyến \(\Delta ADK\)
Mà DE là đường phân giác \(\Delta ADK\)
\(\Rightarrow\Delta ADK\)cân tại D ( đpcm )
c) \(\Rightarrow\)DE là đường cao \(\Delta ADK\)
\(\Rightarrow\widehat{AED}=90^o\left(đpcm\right)\)
\(C=-\left(x^2-2xy+4y^2-2x-10y+8\right)\)
\(=-\left[\left(x^2-2xy+y^2\right)-2\left(x-y\right)+1+\left(3y^2-9y+3\right)+4\right]\)
\(=-\left[\left(x-y\right)^2-2\left(x-y\right)+1+3\left(y-1\right)^2+4\right]\)
\(=-\left[\left(x-y-1\right)^2+3\left(y-1\right)^2+4\right]\)
\(=-\left[\left(x-y-1\right)^2+3\left(y-1\right)^2\right]-4\le-4\)
GTLN là -4 tại x=2;y=1
\(2x^4+\left(1-2x\right)^4=\frac{1}{27}\)
\(\Rightarrow2x^4+\left(1-2x\right)^4=\frac{1}{3}\cdot3\cdot\left[2x^4+\left(1-2x\right)^4\right]\)
\(\Rightarrow\frac{1}{3}\left(1^2+1^2+1^2\right)\left[x^4+x^4+\left(1-2x\right)^4\right]\)\(\ge\)\(\frac{1}{3}\left[x^2+x^2+\left(1-2x\right)^2\right]^2\)
\(\Rightarrow\frac{1}{3}\cdot\frac{1}{9}\left\{3.\left[x^2+x^2+\left(1-2x\right)^2\right]\right\}^2\)
\(\Rightarrow\frac{1}{27}\left\{\left(1^2+1^2+1^2\right)\left[x^2+x^2+\left(1-2x\right)^2\right]\right\}^2\)\(\ge\)\(\frac{1}{27}\left[x+x+\left(1-2x\right)\right]^4=\frac{1}{27}\)
Vậy phương trình có nghiệm khi dấu đẳng thức xảy ra
\(\Leftrightarrow\hept{\begin{cases}x^2=x^2=\left(1-2x\right)^2\\x=x=1-2z\end{cases}}\Leftrightarrow x=\frac{1}{3}\)
KL : ...................................................................
P/s : chưa chắc
Xét : \(\frac{1}{\text{k}\left(\text{k}+1\right)}=\frac{1}{\text{k}}-\frac{1}{\text{k}+1}\)
\(\Leftrightarrow VT=\left(1-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+...+\left(\frac{1}{n}-\frac{1}{n+1}\right)=1-\frac{1}{n+1}< 1\)
\(\Rightarrow\) ĐPCM
\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{n.\left(n+1\right)}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n}-\frac{1}{n+1}\)
\(=1-\frac{1}{n+1}\)
mà \(n\inℕ^∗\Rightarrow\frac{1}{n+1}>0\)
\(\Rightarrow1-\frac{1}{n+1}< 1\)
( đpcm )
Đây là toán lp 8 sao?
?_?
\(C=\left[\left(u^2y^4\right)^2\right]^2+4u^4y^8+4\)
\(=\left(u^4y^8\right)^2+4u^4y^8+4\)
\(=\left(u^4y^8+2\right)^2\)
\(C=4u^4v^8+\left(u^2v^4\right)^4+4\)
\(C=\left(u^4v^8\right)^2+2.u^4v^8.2+2^2\)
\(C=\left(u^4v^8+2\right)^2\)
Chúc bạn học tốt~