K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2020

Số ở giữa của dãy là 1/2.

Do vậy nếu ta xóa số a,b bất kỳ thì ra một số mới nào đó ( đặt số mới là t chẳng hạn ) , đến một lúc nào đó sẽ phải xóa tới số 1/2 mà khi đó ta có :
t + 1/2 - 2 1/2t = 1/2
Do vậy số cuối cùng còn lại bất kể mọi cách xóa là 1/2 nhé.

12 tháng 6 2017

hử, giả sử ta bớt đi 2 số \(2,\sqrt{2}\),thì ta sẽ viết lên 2 số mới là \(\frac{2+\sqrt{2}}{\sqrt{2}}=\sqrt{2}+1\)(*)và \(\frac{2-\sqrt{2}}{\sqrt{2}}=\sqrt{2}-1\)

(*) xuất hiện rồi nhá, lượt đầu tiên luôn 

12 tháng 6 2017

heo định lí hàm số Cos ta có 
AB^2+AC^2 - 2*AB*AC*Cos(góc A)= BC^2 
=> theo ct Heeroong tính S(ABC)= căn( p(p-AB)(p-BC)(p-CA)) 
mình chỉ hướng dẫn thôi nhá vì bh mình k có mt 
c2; S= 1/2 AB*AC*Sin30 
cách này nhanh hơn nhiều

12 tháng 6 2017

\(A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{8.9}.\)

\(A< \frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{9-8}{8.9}\)

\(A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{8}-\frac{1}{9}=1-\frac{1}{9}=\frac{8}{9}\)(1)

Ta có

\(A>\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\)

\(A>\frac{3-2}{2.3}+\frac{4-3}{3.4}+\frac{5-4}{4.5}+...+\frac{10-9}{9.10}\)

\(A>\frac{1}{2}-\frac{1}{10}=\frac{2}{5}\)(2)

Twf (1) vaf (2) => \(\frac{2}{5}< A< \frac{8}{9}\)

12 tháng 6 2017

Đặt A =\(\frac{3}{5}.\left(\frac{5}{9.14}+\frac{5}{14.19}+...+\frac{5}{\left(5n-1\right).\left(5n+4\right)}\right)\)
\(\frac{3}{5}.\left(\frac{1}{9}-\frac{1}{14}+\frac{1}{14}-\frac{1}{19}+...+\frac{1}{5n-1}-\frac{1}{5n+4}\right)\)
\(\frac{3}{5}.\left(\frac{1}{9}-\frac{1}{5n+4}\right)\)
\(\frac{3}{5}.\frac{1}{9}-\frac{3}{5}.\frac{1}{5n+4}=\frac{1}{15}-\frac{3}{5.\left(5n+4\right)}< \frac{1}{15}\)( ĐPCM )

12 tháng 6 2017

\(\sqrt{1+\frac{1}{1^2}+\frac{1}{2^2}}=\sqrt{\left(1+\frac{1}{1^2}-\frac{1}{2^2}\right)^2-2.\left(1.\frac{1}{1^2}-\frac{1}{1^2}.\frac{1}{2^2}-\frac{1}{2^2}.1\right)}=1+\frac{1}{1^2}-\frac{1}{2^2}\)

Tương tự ta có biểu thức trên

\(\sqrt{1+\frac{1}{1^2}+\frac{1}{2^2}}+\sqrt{1+\frac{1}{2^2}+\frac{1}{3^2}}+...+\sqrt{1+\frac{1}{99^2}+\frac{1}{100^2}}\)

\(=1+\frac{1}{1^2}-\frac{1}{2^2}+1+\frac{1}{2^2}-\frac{1}{3^2}+...+1+\frac{1}{99^2}-\frac{1}{100^2}\)

\(=1.99+\frac{1}{1^2}-\frac{1}{100^2}\)

\(=100-\frac{1}{10000}\)

\(=99,9999\)

12 tháng 6 2017

đề có sai ko nhỉ xài đủ pp mà vừa lẻ vừa xấu hết

26 tháng 6 2017

Đề đúng nhé các bạn. Bài này phải sử dụng pp hàm số mới đc. có thể vô ngiệm hoặc nghiệm xấu đấy