Cho 3 số thực dương a, b, c. Chứng minh rằng:
\(\frac{1}{a\sqrt{3a+2b}}+\frac{1}{b\sqrt{3b+2c}}+\frac{1}{c\sqrt{3c+2a}}\)\(\ge\frac{3}{\sqrt{5abc}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(x^4+1\right)\left(y^4+1\right)=x^4y^4+x^4+y^4+1\)
\(=\left[\left(x+y\right)^2-2xy\right]^2-2x^2y^2+x^4y^4+1\)
\(=\left[10-2xy\right]^2-2x^2y^2+x^4y^4+1\)
\(=2x^2y^2+x^4y^4-40xy+101\)
\(=\left(x^4y^4-8x^2y^2+16\right)+10\left(x^2y^2-4xy+4\right)+45\)
\(=\left(x^2y^2-4\right)^2+10\left(xy-2\right)^2+45\ge45\)
Dấu = xảy ra khi \(\hept{\begin{cases}x+y=\sqrt{10}\\xy=2\end{cases}}\)
\(\left(x^4+1\right)\left(y^4+1\right)\ge\left(x^2+y^2\right)^2\)
mà \(^{x^2+y^2\ge\frac{\left(x+y\right)^2}{2}=5}\)
=>\(\left(x^4+1\right)\left(y^4+1\right)\ge\left(x^2+y^2\right)^2\ge25\)
5x3y = 3z2 + 2z -1 hay 5x3y = (z + 1)(3z - 1).
khi đó z + 1 = 3m5n và 3z - 1 = 5k (vì 3z - 1 và 3y nguyên tố cùng nhau).
3m+15n - 5k = 4 hay 5n(3m + 1 - 5k-n) = 4.
suy ra n = 0.
khi đó z + 1 = 3y và 3z - 1 = 5x hay 3y + 1 - 5x = 45
vì 5x chia 4 dư 1 nên 3y + 1 chia 4 dư 1 hay y + 1 chẵn.
đặt y + 1 = 2t. khi đó 32t - 4 = 5x hay (3t - 2)(3t + 2) = 5x.
vì 3t - 2 và 3t + 2 không cùng chia hết cho 5 nên suy ra 3t - 2 = 1 hay t = 1
vậy x = 1; y = 1; z = 2.
cais này ko tìm gtln đc đâu chỉ tìm đ giá trị của P thui vì x = 2015 y rùi thay vào P sẽ thấy ngay
\(P=\frac{\sqrt{x}+4\sqrt{y}}{\sqrt{x}+2\sqrt{y}}=2-\frac{\sqrt{x}}{\sqrt{x}+2\sqrt{y}}\le2\)
Dấu = xảy ra khi \(\hept{\begin{cases}x=0\\y\ne0\end{cases}}\)
ta có \(\frac{x+\sqrt{x}+1}{x+2\sqrt{x}+1}=\frac{\left(\sqrt{x}\right)^2+\sqrt{x}+1}{\left(\sqrt{x}+1\right)^2}\)
đặt (căn x )+1 = a=> căn x = a- 1 => x = (a - 1 ) ^2 thay vào rùi tự làm nhé ^-^
Đk:\(x\ge-2\)
\(pt\Leftrightarrow\sqrt{x+3}+\sqrt{2x+4}-12+\sqrt{3x+7}=0\)
\(\Leftrightarrow\sqrt{x+3}-3+\sqrt{2x+4}-4+\sqrt{3x+7}-5=0\)
\(\Leftrightarrow\frac{x+3-9}{\sqrt{x+3}+3}+\frac{2x+4-16}{\sqrt{2x+4}+4}+\frac{3x+7-25}{\sqrt{3x+7}+5}=0\)
\(\Leftrightarrow\frac{x-6}{\sqrt{x+3}+3}+\frac{2\left(x-6\right)}{\sqrt{2x+4}+4}+\frac{3\left(x-6\right)}{\sqrt{3x+7}+5}=0\)
\(\Leftrightarrow\left(x-6\right)\left(\frac{1}{\sqrt{x+3}+3}+\frac{2}{\sqrt{2x+4}+4}+\frac{3}{\sqrt{3x+7}+5}\right)=0\)
Dễ thấy:\(\forall x\ge2\) thì \(\frac{1}{\sqrt{x+3}+3}+\frac{2}{\sqrt{2x+4}+4}+\frac{3}{\sqrt{3x+7}+5}>0\) (loại)
Nên \(x-6=0\Rightarrow x=6\) (thỏa)
\(\sqrt{2\sqrt{3\sqrt{4...\sqrt{2000}}}}=\sqrt{2\sqrt{3\sqrt{4...\sqrt{1999\sqrt{2000}}}}}\)
\(< \sqrt{2\sqrt{3\sqrt{4...\sqrt{1999.2001}}}}< \sqrt{2\sqrt{3\sqrt{4...\sqrt{1998.\frac{1999+2001}{2}}}}}\)
\(< \sqrt{2\sqrt{3\sqrt{4...\sqrt{1998.2000}}}}< ...< \sqrt{2.\frac{3+5}{2}}\)
\(=\sqrt{2.4}=\sqrt{8}< 3\)
Ta có:
\(\frac{\sqrt{5abc}}{a\sqrt{3a+2b}}+\frac{\sqrt{5abc}}{b\sqrt{3b+2c}}+\frac{\sqrt{5abc}}{c\sqrt{3c+2a}}\)
\(=\frac{5bc}{\sqrt{5ab\left(3ac+2bc\right)}}+\frac{5ac}{\sqrt{5bc\left(3ba+2ca\right)}}+\frac{5ab}{\sqrt{5ca\left(3cb+2ab\right)}}\)
\(\ge\frac{10bc}{5ab+3ac+2bc}+\frac{10ac}{5bc+3ba+2ca}+\frac{10ab}{5ca+3cb+2ab}\)
Đặt \(ab=x,bc=y,ca=z\)(cho dễ nhìn)
\(=\frac{10x}{2x+3y+5z}+\frac{10y}{2y+3z+5x}+\frac{10z}{2z+3x+5y}\)
\(=\frac{10x^2}{2x^2+3yx+5zx}+\frac{10y^2}{2y^2+3zy+5xy}+\frac{10z^2}{2z^2+3xz+5yz}\)
\(\ge\frac{10\left(x+y+z\right)^2}{2\left(x^2+y^2+z^2\right)+8\left(xy+yz+zx\right)}=\frac{5\left(x+y+z\right)^2}{\left(x^2+y^2+z^2\right)+4\left(xy+yz+zx\right)}\)
Giờ ta cần chứng minh
\(\frac{5\left(x+y+z\right)^2}{\left(x^2+y^2+z^2\right)+4\left(xy+yz+zx\right)}\ge3\)
\(\Leftrightarrow x^2+y^2+z^2\ge xy+yz+zx\)(đúng)
Vậy ta có ĐPCM
alibaba nguyễn bạn trả lời đúng đấy! Nhưng để dễ hiểu hơn ta nên áp dụng tổ hợp BĐT AM-GM và Cauchy-Schwarz nhé!