Cho hình thoi ABCD có \(\widehat{A}=120^0\)vẽ tia à tạo với Ab một góc \(\widehat{BAx}=15^0\)và cắt CD tại N, BC tại M . CMR \(\frac{3}{AM^2}+\frac{3}{AN^2}=\frac{4}{AB^2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chứng minh điều ngược lại đúng tức là. Cho a,b,c>0 thỏa \(b+c=2a\) thì \(\sqrt{b+1}+\sqrt{c+1}\le2\sqrt{a+1}\)
Áp dụng BĐT Cauchy-Schwarz ta có:
\(VT=\left(\sqrt{b+1}+\sqrt{c+1}\right)^2\)
\(\le\left(1+1\right)\left(b+1+c+1\right)\)
\(=2\left(b+c+2\right)\le4\left(a+1\right)=VP\)
\(\Rightarrow\left(\sqrt{b+1}+\sqrt{1+c}\right)^2\le4\left(a+1\right)\)
\(\Rightarrow\sqrt{b+1}+\sqrt{1+c}\le\sqrt{4\left(a+1\right)}=2\sqrt{a+1}\)
BĐT cuối đúng hay ta có ĐPCM
Chứng minh điều ngược lại đúng, tức là :Cho a,b,c>0 thỏa \(b+c=2a\) thì \(\sqrt{b+1}+\sqrt{c+1}\le2\sqrt{a+1}\)
Áp dụng BĐT Cauchy-Schwarz ta có:
\(VT^2=\left(\sqrt{b+1}+\sqrt{c+1}\right)^2\)
\(\le\left(1+1\right)\left(b+1+c+1\right)\)
\(=2\left(b+c+2\right)=2\left(2a+2\right)\)
\(=4\left(a+1\right)=2^2\sqrt{\left(a+1\right)^2}=VP^2\)
Vì \(VT^2\le VP^2\Rightarrow VT\le VP\)
BĐT kia đúng nên ta có ĐPCM
ta có BH+HC=3+4=7cm\(AB^2=BH.BC=3.7=21\Rightarrow AB\approx4,6\)
\(AC^2=HC.BC=4.7=28cm\Rightarrow AC\approx5,3\)
\(\sqrt{x}+\sqrt{x-5}+\sqrt{x+7}=9\)
Đk: \(x\ge5\)
\(\Leftrightarrow\sqrt{x}-3+\sqrt{x-5}-2+\sqrt{x+7}-4=0\)
\(\Leftrightarrow\frac{x-9}{\sqrt{x}+3}+\frac{x-5-4}{\sqrt{x-5}+2}+\frac{x+7-16}{\sqrt{x+7}+4}=0\)
\(\Leftrightarrow\frac{x-9}{\sqrt{x}+3}+\frac{x-9}{\sqrt{x-5}+2}+\frac{x-9}{\sqrt{x+7}+4}=0\)
\(\Leftrightarrow\left(x-9\right)\left(\frac{1}{\sqrt{x}+3}+\frac{1}{\sqrt{x-5}+2}+\frac{1}{\sqrt{x+7}+4}\right)=0\)
Dễ thấy: \(\frac{1}{\sqrt{x}+3}+\frac{1}{\sqrt{x-5}+2}+\frac{1}{\sqrt{x+7}+4}>0\)
\(\Rightarrow x-9=0\Rightarrow x=9\) (thỏa)
Đẳng thức có nghĩa \(\Leftrightarrow2x^2+6\ge0\)
Mà: \(x^2\ge0\forall x\)
\(\Rightarrow2x^2\ge0\forall x\)
\(\Rightarrow2x^2+6>0\forall x\)
Vậy đẳng thức luôn có nghĩa
vì 2x^2 luôn lớn hơn 0 suy ra x k cần đk để căn thức có nghĩa
\(\sqrt{x^2-6x+12}=\sqrt{x^2-6x+9+3}=\sqrt{\left(x-3\right)^2+9}\ge0\)nên với mọi x thì biểu thức có nghĩa
do \(2x^2\ge0\Rightarrow2x^2+6>0\) nên điều kiện xác định đúng với mọi x