K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 2 2019

b) \(x^4+x^3-3x^2-4x-4=0\)

\(\Leftrightarrow x^4+2x^3-x^3-2x^2-x^2-2x-2x-4=0\)

\(\Leftrightarrow x^3\left(x+2\right)-x^2\left(x+2\right)-x\left(x+2\right)-2\left(x+2\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x^3-x^2-x-2\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x^3-2x^2+x^2-2x+x-2\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left[x^2\left(x-2\right)+x\left(x-2\right)+\left(x-2\right)\right]=0\)

\(\Leftrightarrow\left(x+2\right)\left(x-2\right)\left(x^2+x+1\right)=0\)

Vì \(x^2+x+1>0\forall x\)( cách c/m mình nói sau )

\(\Rightarrow\orbr{\begin{cases}x+2=0\\x-2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-2\\x=2\end{cases}}}\)

Vậy....

22 tháng 2 2019

Cách chứng minh :

\(x^2+x+1\)

\(=x^2+2\cdot x\cdot\frac{1}{2}+\frac{1}{4}+\frac{3}{4}\)

\(=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)

Vì \(\left(x+\frac{1}{2}\right)^2\ge0\forall x\)

\(\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\forall x\)

Hay \(x^2+x+1>0\forall x\)( đpcm )

GN
GV Ngữ Văn
Giáo viên
22 tháng 2 2019

* Điểm chung: Ba bài thơ đều được sáng tác theo thể thất ngôn tứ tuyệt, hình thức ngắn gọn, cô đọng.

* Điểm riêng:

- Bài "Tức cảnh Pác Bó" được sáng tác trong những năm kháng chiến chống Pháp, khi Bác hoạt động Cách mạng ở Pác Bó.

- Bài "Ngắm trăng" được sáng tác khi bác bị bắt giam, sống trong hoàn cảnh tù đày.

- Bài "Đi đường" được sáng tác khi Bác trên đường chuyển lao từ nhà tù này đến nhà tù khác. Qua hành trình chuyển lao, người tù Cách mạng - nhà thơ đã nhận thức được những điều mới mẻ.

24 tháng 2 2019

cùng thể thơ thất ngôn tứ tuyệt

đều thể hiện phong thái ung dung lạc quan của người chiến sĩ cách mạng (bác)

thơ mang hòa quyện chất thép và chất tình 

câu này cô giáo mình kt 15 phút òi nên mk nhớ rõ lắm. ok đúng

21 tháng 2 2019

\(a,x\left(x-1\right)\left(x+4\right)\left(x+5\right)=84\)

\(\Leftrightarrow\left[x\left(x+4\right)\right]\left[\left(x-1\right)\left(x+5\right)\right]=84\)

\(\Leftrightarrow\left(x^2+4x\right)\left(x^2+4x-5\right)=84\)

Đặt \(x^2+4x=a\)

Ta có : \(a=x^2+4x+4-4=\left(x+2\right)^2-4\ge-4\)

\(\Rightarrow a\ge-4\)

\(Ta\text{ }co'\text{ }pt:a\left(a-5\right)=84\)

\(\Leftrightarrow a^2-5a-84=0\)

\(\Leftrightarrow\left(a-12\right)\left(a+7\right)=0\)

Mà \(a\ge-4\Rightarrow a=12\)

                       \(\Rightarrow x^2+4x=12\)

                       \(\Leftrightarrow\left(x-2\right)\left(x+6\right)=0\)

                        \(\Leftrightarrow\orbr{\begin{cases}x=2\\x=-6\end{cases}}\)

\(b,x^3-5x^2+8x-4=0\)

\(\Leftrightarrow\left(x-2\right)^2\left(x-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=1\end{cases}}\)

12 tháng 5 2020

dong ho chi may giodong ho

21 tháng 2 2019

a) \(x\left(x+1\right)\left(x-1\right)\left(x+2\right)=24\)\(\Leftrightarrow\left(x^2+x\right)\left(x^2+x-2\right)=24\)

Đặt t = x2+ x => \(t\left(t-2\right)=24\) \(\Leftrightarrow t^2-2t=24\Leftrightarrow t^2-2t-24=0\Leftrightarrow\left(t+4\right)\left(t-6\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}t+4=0\\t-6=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}t=-4\\t=6\end{cases}}\)

-Nếu t = -4 thì x+ x  = -4    \(\Leftrightarrow x^2+x+4=0\left(voly\right)\)

-Nếu t = 6 thì x2 + x = 6 \(\Leftrightarrow x^2+x-6=0\Leftrightarrow\left(x-2\right)\left(x+3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x+3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=-3\end{cases}}\)

Vậy phương trình có tập nghiệm S = { 2; -3 }

b) \(2x^3+9x^2+7x-6=0\)

\(\Leftrightarrow\left(x+2\right)\left(x+3\right)\left(2x-1\right)=0\)

\(\Leftrightarrow\) Hoặc x + 2 = 0 hoặc x + 3 = 0 hoặc 2 x - 1 = 0

\(\Leftrightarrow\) x = -2 hoặc x = -3 hoặc x = 1/2

Vậy phương trình có tập nghiệm S = { -2; -3; 1/2 }

21 tháng 2 2019

\(\left(x-2\right)\left(x+2\right)\left(x^2-10\right)=72\)

<=>\(\left(x^2-4\right)\left(x^2-10\right)=72\) (1)

Đặt \(x^2-7=t\)

=> pt (1) <=> \(\left(t+3\right)\left(t-3\right)=72\)

<=> \(t^2-9=72\)

<=> \(t^2-81=0\)

<=> \(\left(t-9\right)\left(t+9\right)=0\)

Tự làm nốt

21 tháng 2 2019

\(8x^2-\left(4x+3\right)^3+\left(2x+3\right)^3=0\)

\(\Leftrightarrow8x^2+\left(2x+3-4x-3\right)\left[\left(4x+3\right)^2+\left(2x+3\right)\left(4x+3\right)+\left(2x+3\right)^2\right]=0\)

\(\Leftrightarrow8x^2-2x\left(16x^2+24x+9+8x^2+18x+9+4x^2+12x+9\right)=0\)

\(\Leftrightarrow2x\left(4x-28x^2-54x-27\right)=0\)

\(\Leftrightarrow2x\left(28x^2+50x+27\right)=0\)

Tự làm nốt

11 tháng 5 2020

Tui hổng biết

11 tháng 5 2020

Tui hổng biết

Phương trình vô nghiệm khi :

\(\hept{\begin{cases}\left(2m-1\right)x=0\\3m-5\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}m=\frac{1}{2}\\m\ne\frac{5}{3}\end{cases}}\Rightarrow m=\frac{1}{2}\)

vậy : \(m=\frac{1}{2}\)thì .........

câu 6 em học rồi, tiếng việt 5 nhé, em 2k8.

câu trả lời cho câu 6 là " Nhà yêu nước Nguyễn Trung Trực"

hok tốt

k nhé

9 tháng 3 2019

mình cũng lớp 5 nè