Cho tam giác ABC nhọn, có BH và CK là hai đường cao cắt nhau tại I a) Chứng minh tam giác DBI đồng dạng tam giác HBC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2\left(3-4x\right)=10-\left(2x-5\right)\Rightarrow6-8x=10-2x+5\)
\(\Rightarrow6-8x-10+2x-5=0\)
\(-9-6x=0\Rightarrow-6x=9\Rightarrow x=\frac{-3}{2}\)
Bunhiacopxki:
\(\left(a^2+bc+ca\right)\left(b^2+bc+ca\right)\ge\left(ab+bc+ca\right)^2\)
\(\Rightarrow\dfrac{ab}{a^2+bc+ca}\le\dfrac{ab\left(b^2+bc+ca\right)}{\left(ab+bc+ca\right)^2}\)
Tương tự: \(\dfrac{bc}{b^2+ca+ab}\le\dfrac{bc\left(c^2+ca+ab\right)}{\left(ab+bc+ca\right)^2}\)
\(\dfrac{ca}{c^2+ab+bc}\le\dfrac{ca\left(a^2+ab+bc\right)}{\left(ab+bc+ca\right)^2}\)
\(\Rightarrow VT\le\dfrac{ab\left(b^2+bc+ca\right)+bc\left(c^2+ca+ab\right)+ca\left(a^2+ab+bc\right)}{\left(ab+bc+ca\right)^2}\)
Nên ta chỉ cần chứng minh:
\(\dfrac{ab\left(b^2+bc+ca\right)+bc\left(c^2+ca+ab\right)+ca\left(a^2+ab+bc\right)}{\left(ab+bc+ca\right)^2}\le\dfrac{a^2+c^2+c^2}{ab+bc+ca}\)
\(\Leftrightarrow ab\left(b^2+bc+ca\right)+bc\left(c^2+ca+ab\right)+ca\left(a^2+ab+bc\right)\le\left(a^2+b^2+c^2\right)\left(ab+bc+ca\right)\)
Nhân phá và rút gọn 2 vế:
\(\Leftrightarrow a^3b+b^3c+c^3a\ge abc\left(a+b+c\right)\)
\(\Leftrightarrow\dfrac{a^3b+b^3c+c^3a}{abc}\ge a+b+c\)
\(\Leftrightarrow\dfrac{a^2}{c}+\dfrac{b^2}{a}+\dfrac{c^2}{b}\ge a+b+c\)
Đúng do: \(\dfrac{a^2}{c}+\dfrac{b^2}{a}+\dfrac{c^2}{b}\ge\dfrac{\left(a+b+c\right)^2}{a+b+c}=a+b+c\)
Dấu "=" xảy ra khi \(a=b=c\)
Biểu thức này chỉ có max khi a;b là số thực dương, đề bài thiếu
Bunhiacopxki:
\(\left(a^3+b\right)\left(\dfrac{1}{a}+b\right)\ge\left(a+b\right)^2\)
\(\Rightarrow\dfrac{1}{a^3+b}\le\dfrac{\dfrac{1}{a}+b}{\left(a+b\right)^2}=\dfrac{ab+1}{a\left(a+b\right)^2}\)
Tương tự: \(\dfrac{1}{b^3+a}\le\dfrac{ab+1}{b\left(a+b\right)^2}\)
\(\Rightarrow P\le\left(a+b\right)\left(\dfrac{ab+1}{a\left(a+b\right)^2}+\dfrac{ab+1}{b\left(a+b\right)^2}\right)-\dfrac{1}{ab}\)
\(P\le\left(a+b\right).\dfrac{ab+1}{\left(a+b\right)^2}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)-\dfrac{1}{ab}=\dfrac{ab+1}{a+b}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)-\dfrac{1}{ab}\)
\(P\le\dfrac{ab+1}{a+b}\left(\dfrac{a+b}{ab}\right)-\dfrac{1}{ab}=\dfrac{ab+1}{ab}-\dfrac{1}{ab}=1+\dfrac{1}{ab}-\dfrac{1}{ab}=1\)
Dấu "=" xảy ra khi \(a=b=1\)
\(A=-\dfrac{1}{5}+\dfrac{1}{5^2}-\dfrac{1}{5^3}+...+\dfrac{1}{5^{100}}\)
\(\Rightarrow5A=-1+\dfrac{1}{5}-\dfrac{1}{5^2}+...+\dfrac{1}{5^{99}}\)
\(\Rightarrow5A+A=-1+\dfrac{1}{5^{100}}\)
\(\Rightarrow6A=-\dfrac{5^{100}+1}{5^{100}}\)
\(\Rightarrow A=-\dfrac{5^{100}+1}{5^{100}\times6}\)
\(\left\{{}\begin{matrix}\left|x\right|\ge2\\\left|y\right|\ge2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x^2\ge4\\y^2\ge4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{x^2}\le\dfrac{1}{4}\\\dfrac{1}{y^2}\le\dfrac{1}{4}\end{matrix}\right.\)
\(\left(\dfrac{x+y}{xy}\right)^2=\dfrac{\left(x+y\right)^2}{x^2y^2}\le\dfrac{2\left(x^2+y^2\right)}{x^2y^2}=\dfrac{2}{x^2}+\dfrac{2}{y^2}\le2.\dfrac{1}{4}+2.\dfrac{1}{4}=1\)
\(\Rightarrow\dfrac{x+y}{xy}\le1\)
Dấu "=" xảy ra khi \(x=y=\pm2\)