Cho hình bình hành ABCD . Một đường thẳng d cắt AB , BC , BD lần lượt tại M , N , I . Chứng minh rằng : \(\frac{BA}{BM}\) + \(\frac{BC}{BN}\) = \(\frac{BD}{BI}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\frac{1}{x^2+5x+6}+\frac{1}{x^2+7x+12}+\frac{1}{x^2+9x+20}=\frac{3}{40}\)
\(\Leftrightarrow\frac{1}{\left(x+2\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+4\right)}+\frac{1}{\left(x+4\right)\left(x+5\right)}=\frac{3}{40}\)
\(\Leftrightarrow\frac{1}{x+2}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x+4}+\frac{1}{x+4}-\frac{1}{x+5}=\frac{3}{40}\)
\(\Leftrightarrow\frac{1}{x+2}-\frac{1}{x+5}=\frac{3}{40}\)
\(\Leftrightarrow\frac{x+5-x-2}{\left(x+2\right)\left(x+5\right)}=\frac{3}{40}\)
\(\Leftrightarrow\frac{3}{\left(x+2\right)\left(x+5\right)}=\frac{3}{40}\Leftrightarrow\left(x+2\right)\left(x+5\right)=40\)
\(\Leftrightarrow\left(x+2\right)\left(x+5\right)=8.5=\left(-8\right).\left(-5\right)\)
<=> x + 2 = 5 hoặc x + 2 = -8
<=> x = 3 hoặc x = -10
Vậy x = 3 hoặc x = -10
![](https://rs.olm.vn/images/avt/0.png?1311)
thiếu đề nhaa thêm -2 vào vế phải đấy
<=> 9x^2+25y^2+1+30xy-6x-10y+4y^2-20y+25=0
<=> (9x^2+25y^2+1+30xy-6x-10y)+(4y^2-20y+25)=0
<=> {(3x+5y-1)}^2+{(2y-5)}^2=0
dễ rồi đấy
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(x^2+6x+6+\left(\frac{x+3}{x+2}\right)^2=0\)
\(\Leftrightarrow\left(x+3\right)^2+\left(\frac{x+3}{x+4}\right)^2-3=0\)
đặt x+3=y => x+4=y+1
lại có \(y^2+\frac{y^2}{\left(y+1\right)^2}-3=0\)
Tự giải tiếp đi