K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 2 2019

\(x^2+y^2+z^2+xy+yz+xz\)

\(=\left(x^2+y^2+z^2+2xy+2yz+2xz\right)-\left(xy+yz+xz\right)\)

\(=\left(x+y+z\right)^2-\left(xy+yz+xz\right)\)

Mặt khác: \(xy+yz+xz\le\frac{\left(x+y+z\right)^2}{3}\)

\(\Rightarrow\left(x+y+z\right)^2-\left(xy+yz+xz\right)\ge\left(x+y+z\right)^2-\frac{\left(x+y+z\right)^2}{3}=9-3=6\)

"=" khi a=b=c=1

24 tháng 2 2019

CE là đg gì bạn

24 tháng 2 2019

Giả sử điều cần chứng minh sai,khi đó \(a;b;c\ge1\)

Thì: \(a.1.1.1.1\le a.a.a.a.a=a^5\)

\(b.1.1.1.1\le b.b.b.b.b=b^5\)

\(c.1.1.1.1\le c.c.c.c.c=c^5\)

Khi đó \(a+b+c\le a^5+b^5+c^5\)(trái với giả thiết)

Vậy điều giả sử sai,điều cần cm đúng

24 tháng 2 2019

Câu b là kéo dài tại F ạ,tại mk ghi nhầm:)))

24 tháng 2 2019

caau a bn làm đc chưa

24 tháng 2 2019

\(\left(x^2-4x\right)^2+2\left(x-2\right)^2=43\)

\(\Leftrightarrow x^4-8x^3+16x^2+2x^2-8x+8-43=0\)

\(\Leftrightarrow x^4-8x^3+18x^2-8x-35=0\)

\(\Leftrightarrow x^4+x^3-9x^3-9x^2+27x^2+27x-35x-35=0\)

\(\Leftrightarrow x^3\left(x+1\right)-9x^2\left(x+1\right)+27x\left(x+1\right)-35\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^3-9x^2+27x-35\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^3-5x^2-4x^2+20x+7x-35\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left[x^2\left(x-5\right)-4x\left(x-5\right)+7\left(x-5\right)\right]=0\)

\(\Leftrightarrow\left(x+1\right)\left(x-5\right)\left(x^2-4x+7\right)=0\)

Vì \(x^2-4x+7< 0\)

\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x-5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=5\end{cases}}}\)

Vậy....

24 tháng 2 2019

bạn có thể giúp mình 2 câu còn lại ko ạ