Cho a,b,c\(\in\)R đôi 1 khác nhau thỏa \(a^3+b^3+c^3=3abc\)và abc khác 0
Tính P=\(\frac{ab^2}{a^2+b^2-c^2}+\frac{bc^2}{b^2+c^2-a^2}+\frac{ca^2}{c^2+a^2-b^2}\)
CACSBANJ ZẢI NHANH ZÚP
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
What the.....
À hỉu r` nhưng chưa hok tới
=> k giải đc
\//Bn dùng đt nên k cack đc hả
Có \(\left(\sqrt{2}+\sqrt{3}\right)^2=2+3+2\sqrt{2}\sqrt{3}=5+\)\(\sqrt{24}\)
\(\left(\sqrt{10}\right)^2=10=5+5=5+\sqrt{25}\)
Vì \(\sqrt{24}< \sqrt{25}\)
Nên \(5+\sqrt{24}< 5+\sqrt{25}\)
Hay \(\left(\sqrt{2}+\sqrt{3}\right)^2< \left(\sqrt{10}\right)^2\)
Vậy \(\sqrt{2}+\sqrt{3}< \sqrt{10}\)(vì\(\sqrt{2}+\sqrt{3},\sqrt{10}>0\))
a)Áp dụng BĐT C-S ta có:
\(A^2=\left(\sqrt{x-2}+\sqrt{4-x}\right)^2\)
\(\le\left(1+1\right)\left(x-2+4-x\right)=4\)
\(\Rightarrow A^2\le4\Rightarrow A\le2\)
Đẳng thức xảy ra khi x=3
b)Tiếp tục áp dụng BĐT C-S
\(B^2=\left(\sqrt{x}+\sqrt{2-x}\right)^2\)
\(\le\left(1+1\right)\left(x+2-x\right)=4\)
\(\Rightarrow B^2\le4\Rightarrow B\le2\)
Xảy ra khi x=1
\(a^3+b^3+c^3=3abc\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\Leftrightarrow\orbr{\begin{cases}a+b+c=0\\a=b=c\end{cases}}\)
...... bạn làm 2 TH rồi thế vào P nhé, chỗ phân tích ko hiểu thì cứ hỏi lại mình