Cho tứ giác ABCD nội tiếp đường tròn (O) có CD = AD+BC ( BC >=AD). Cmr tia phân giác của 2 góc DAB và ABC cắt nhau tại 1 điểm nằm trên cạnh CD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
O' O B C K Y A
a) Ta thấy ngay AY chính là tiếp tuyến chung của hai đường tròn (O) và (O')
Theo tính chất hai tiếp tuyến cắt nhau, ta có YB = YA = YC
Vậy nên tam giác BAC vuông tại A hay \(\widehat{BAC}=90^o\)
b) Theo tính chất hai tiếp tuyến cắt nhau ta có \(\widehat{AYO}=\widehat{OYB};\widehat{AYO'}=\widehat{O'YC}\)
\(\Rightarrow\widehat{OYO'}=\widehat{OYA}+\widehat{AYO'}=90^o\)
Xét tam giác vuông OYO' có YK là trung tuyến ứng với cạnh huyền nên \(KY=\frac{OO'}{2}\)
c) Ta thấy ngay BOO'C là hình thang vuông có Y là trung điểm BC, K là trung điểm OO' nên KY là đường trung bình của hình thang.
Vậy thì KY // OB // O'C
Từ đó ta có ngay KY vuông góc BC.
Lại có \(KY=KO\)
Nên BC là tiếp tuyến của đường tròn tâm K, bán kính KO.
Câu hỏi của ミ★¢тƙ_⁰⁷★彡 - Toán lớp 8 - Học toán với OnlineMath
bài một con vịt ấy.lên youtube mà xem.bài lớp 1 mà chém lên hẳn lớp 9.
\(P^2=\left(1.x+1.\sqrt{1-2x-x^2}\right)^2\)
Áp dụng bđt bunhiakovsky ta có:
\(P^2=\left(1.x+1.\sqrt{1-2x-x^2}\right)^2\le\left(1^2+1^2\right)\left(x^2+\left(\sqrt{1-2x-x^2}\right)^2\right)\)
\(\Leftrightarrow P^2\le2\left(x^2+1-2x-x^2\right)=-4x+2\)
\(P=x+\sqrt{1-2x-x^2}=x+\sqrt{-x^2-2x+1}.\)
\(=x+\sqrt{-\left(x^2+2x+1\right)+2}=x+\sqrt{-\left(x+1\right)^2+2}\)
đang vội nên mk làm tắt nha . đk x>=-5/4
\(\Leftrightarrow2\left(x+1\right)\)\(.\left[\left(x+2\right)-\sqrt{4x+5}\right]+2 \left(x+5\right)\sqrt{x+3}\left(\sqrt{x+3}-2\right)+\)\(2x^2+6x-8=0\)
\(\Leftrightarrow\frac{2\left(x+1\right)^2\left(x-1\right)}{x+2+\sqrt{4x+5}}+\frac{2\left(x+5\right)\left(x-1\right)\sqrt{x+3}}{\sqrt{x+3}+2}+2\left(x-1\right)\left(x+4\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left[\frac{2\left(x+1\right)^2}{x+2+\sqrt{4x+5}}+\frac{2\left(x+5\right)\sqrt{x+3}}{\sqrt{x+3}+2}+2\left(x+4\right)\right]=0\)
de thấy bt trong ngoặc dương suy ra x=1 là no