K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 7 2018


Thân heo vừa béo lại vừa ù
Bảy nổi ba chìm với nước lu
Chết đuối quẫy chân không ai cứu
Đứa nào mà cứu, đứa ấy ngu


 

5 tháng 7 2018

a, a2+b2+c2 >= ab+bc+ca

<=>a2+b2+c2-ab-bc-ca >= 0

<=>2(a2+b2+c2-ab-bc-ca) >= 0

<=>2a2+2b2+2c2-2ab-2bc-2ca >= 0

<=>(a2-2ab+b2)+(b2-2bc+c2)+(c2-2ca+a2) >= 0

<=>(a-b)2+(b-c)2+(c-a)2 >= 0 (luôn đúng)

Dấu "=" xảy ra chỉ khi và khi \(\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}\Leftrightarrow a=b=c}\)

Vậy...

b, a2+b2+1 >= ab+a+b

<=>a2+b2+1-ab-a-b >= 0

<=>2(a2+b2+1-ab-a-b) >= 0

<=>2a2+2b2+2-2ab-2a-2b >= 0

<=>(a2-2ab+b2)+(a2-2a+1)+(b2-2b+1) >= 0

<=>(a-b)2+(a-1)2+(b-1)2 >= 0 (luôn đúng)

Dấu "=" xảy ra chỉ khi và khi \(\hept{\begin{cases}a-b=0\\a-1=0\\b-1=0\end{cases}\Leftrightarrow a=b=1}\)

Vậy...

c, a2+b2+c2+3 >= 2(a+b+c)

<=>a2+b2+c2+3-2a-2b-2c >= 0

<=>(a2-2a+1)+(b2-2b+1)+(c2-2c+1) >= 0

<=>(a-1)2+(b-1)2+(c-1)2 >= 0 (luôn đúng)

Dấu "=" xảy ra chỉ khi và khi \(\hept{\begin{cases}a-1=0\\b-1=0\\c-1=0\end{cases}\Leftrightarrow a=b=c=1}\)

Vậy...

d, a2+b2+c2 >= 2(ab+bc-ca)

<=>a2+b2+c2-2ab-2bc+2ca >= 0

<=>(a-b-c)2 >= 0 (luôn đúng)

Dấu "=" xảy ra khi a=b=c

Vậy...

e,ta có:  \(\frac{a^2+b^2}{2}\ge\left(\frac{a+b}{2}\right)^2\Leftrightarrow\frac{a^2+b^2}{2}-\left(\frac{a+b}{2}\right)^2\ge0\)

\(\Leftrightarrow\frac{2\left(a^2+b^2\right)}{4}-\frac{a^2+2ab+b^2}{4}\ge0\)

\(\Leftrightarrow\frac{2a^2+2b^2-a^2-2ab-b^2}{4}\ge0\)

\(\Leftrightarrow\frac{a^2-2ab+b^2}{4}\ge0\Leftrightarrow\left(\frac{a-b}{2}\right)^2\ge0\) (luôn đúng) (1)

Lại có: \(\left(\frac{a+b}{2}\right)^2\ge ab\Leftrightarrow\frac{a^2+2ab+b^2}{4}-\frac{4ab}{4}\ge0\)

\(\Leftrightarrow\frac{a^2+2ab+b^2-4ab}{4}\ge0\Leftrightarrow\left(\frac{a-b}{2}\right)^2\ge0\) (luôn đúng) (2)

Từ (1) và (2) => \(ab\le\left(\frac{a+b}{2}\right)^2\le\frac{a^2+b^2}{2}\)

Dấu "=" xảy ra khi a = b

5 tháng 7 2018

Có 2 trường hợp phá giá trị tuyệt đối nhé

5 tháng 7 2018

\(2x-1+2x-5=x.\)

\(3x=6\)

\(x-2\)

12 tháng 11 2019

Cách làm tương tự: Câu hỏi của lekhanhhung - Toán lớp 7 - Học toán với OnlineMath

5 tháng 7 2018

Gọi 3 số tự nhiên liên tiếp đó là: \(k-1;k;k+1\)

Theo đề bài, ta có: \(k.\left(k+1\right)-k.\left(k-1\right)=50\)

                               \(k^2+k-k^2+k=50\)

                                    \(2k=50\Rightarrow k=\frac{50}{2}=25\)

\(\Rightarrow k-1=25-1=24\)

     \(k+1=25+1=26\)

Vậy 3 số tự nhiên liên tiếp đó là 24;25;26

5 tháng 7 2018

a, \(n\left(n+5\right)-\left(n-3\right)\left(n+2\right)=n^2+5n-n^2-2n+3n+6=6n+6=6\left(n+1\right)⋮6\) (đpcm)

b, \(\left(n-1\right)\left(n+1\right)-\left(n-7\right)\left(n-5\right)=n^2-1-n^2+5n+7n-35=12n-36=12\left(n-3\right)⋮12\) (đpcm)

5 tháng 7 2018

\(N=3\frac{1}{315}.\frac{1}{651}-\frac{1}{105}.3\frac{650}{651}-\frac{4}{315.615}\)

Đặt  \(\frac{1}{105}=a;\)\(\frac{1}{651}=b\)

Khi đó:

  \(N=3.\left(3a\right)b-a.3\left(1-b\right)-4\left(3a\right).b\)

\(=9ab-3a+3ab-12ab=-3a\)

Vậy  \(N=-3.\frac{1}{105}=-\frac{1}{35}\)