Tìm x ,y , z
\(\frac{3x-2y}{37}=\frac{5y-3z}{15}=\frac{2z-5x}{2}\) và 10x - 3y - 2z = -4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để \(\frac{x^2+7}{x+1}\)nhận giá trị nguyên thì \(x^2+7⋮x+1\left(1\right)\)
+)Ta có:\(x+1⋮x+1\)
\(\Rightarrow x.\left(x+1\right)⋮x+1\)
\(\Rightarrow x^2+x⋮x+1\left(2\right)\)
+)Từ (1) và (2)
\(\Rightarrow\left(x^2+x\right)-\left(x^2+7\right)⋮x+1\)
\(\Rightarrow x^2+x-x^2-7⋮x+1\)
\(\Rightarrow x-7⋮x+1\left(3\right)\)
+)Ta lại có:\(x+1⋮x+1\left(4\right)\)
+)Từ (3) và (4)
\(\Rightarrow\left(x+1\right)-\left(x-7\right)⋮x+1\)
\(\Rightarrow x+1-x+7⋮x+1\)
\(\Rightarrow8⋮x+1\)
\(\Rightarrow x+1\in\left\{\pm1;\pm2;\pm4;\pm8\right\}\)
\(\Rightarrow x\in\left\{-2;0;-3;1;-5;3;-9;7\right\}\in Z\)
Vậy \(x\in\left\{-2;0;-3;1;-5;3;-9;7\right\}\)
Chúc bn học tốt
1 They grow coffee in more than 50 countries around the world__A________
2 The book was bought yesterday____P_____
3 Tim was invited to Kate"s birthday party ___P____
4 She feeds her dogs twice a day___A_______
5 My keys were lost yesterday__P__
a/ xét 2 tam giác AMB và CMK có:
AM = MC (M là t/đ AC)
góc KMC = góc BMA (đối đỉnh)
MK = MB (gt)
=> tam giác AMB = tam giác CMK (c.g.c)
=> góc MAB = góc MCK = 90 độ hay KC vuông AC (đpcm)
b. xét hai tam giác AMK và CMB có:
AM = MC (M là t/đ AC)
góc AMK = góc CMB (đối đỉnh)
MK = MB (gt)
=> tg AMK = tg CMB (c.g.c)
=> góc AKM = góc CBM mà hai góc này ở vị trí sole trong nên AK // BC (đpcm)
1 It is dangerous to ride a motorbike without a...................
A) helmet
B) triangle
C) tricycle
D) cirlcle
2 In Ha Noi, during rush hour , some road users ride their motorbikes on the .....................
A) driving licence
B) lane
C) pavement
D) seat belt
3 Traffic is terrible during the ..............when everyone is in a hurry to get to work or come back home
A) traffic light
B) road sign
C) traffic rule
D) rush hour
học tốt
b) \(\left(x-\frac{1}{2}\right)\left(1+5x\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-\frac{1}{2}=0\\1+5x=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=0+\frac{1}{2}=\frac{1}{2}\\5x=-1\Rightarrow x=\frac{-1}{5}\end{cases}}\)
vậy............................................
a) 42 + 3/7 . | 3x - 1 | = 12
<=> 3/7 . | 3x - 1 | = 12 - 42
<=> 3/7 . | 3x - 1 | = -30
<=> | 3x - 1 | = -30 . 3/7
<=> | 3x - 1 | = -90/7 (vô lí)
b) (x - 1/2)(1 + 5x) = 0
<=> \(\hept{\begin{cases}x-\frac{1}{2}=0\\1+5x=0\end{cases}}\) <=> \(\hept{\begin{cases}x=\frac{1}{2}\\x=-\frac{1}{5}\end{cases}}\)
c) | 2x - 1 | = | x + 2 |
<=> \(\hept{\begin{cases}2x-1=x+2\\2x-1=-x-2\end{cases}}\) <=> \(\hept{\begin{cases}2x-x=1+2\\2x+x=1-2\end{cases}}\) <=> \(\hept{\begin{cases}x=3\\x=-\frac{1}{3}\end{cases}}\)
\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)
\(\frac{1}{2^2}< \frac{1}{1\cdot2}\)
\(\frac{1}{3^2}< \frac{1}{2\cdot3}\)
\(\frac{1}{4^2}< \frac{1}{3\cdot4}\)
...
\(\frac{1}{100^2}< \frac{1}{99\cdot100}\)
\(\Rightarrow A< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}\)
\(\Rightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(\Rightarrow A< 1-\frac{1}{100}=\frac{99}{100}\) ; \(\frac{99}{100}< \frac{3}{4}\)
\(\Rightarrow A< \frac{3}{4}\)
Số đo mỗi bên à :
\(\frac{4}{5}:4=\frac{1}{5}\left(dm\right)\)
Đ/s :\(\frac{1}{5}dm\)
Số đo của mỗi bên là :
\(\frac{5}{4}:4=\frac{1}{5}\left(dm\right)\)
Đ/S: \(\frac{1}{5}dm\)
hok tốt
\(\frac{3x-2y}{37}=\frac{5y-3z}{15}=\frac{2z-5x}{2}\)
\(\Leftrightarrow\frac{5\left(3x-2y\right)}{5.37}=\frac{2\left(5y-3z\right)}{2.15}=\frac{3\left(2z-5x\right)}{3.2}\)
\(\Leftrightarrow\frac{15x-10y}{5.37}=\frac{10y-6z}{2.15}=\frac{6z-15x}{3.2}\)
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\Rightarrow\frac{15x-10y}{5.37}=\frac{10y-6z}{2.15}=\frac{6z-15x}{3.2}=\frac{15x-10y+10y-6z+6z-15x}{5.37+2.15+3.2}=0\)
\(\Rightarrow\hept{\begin{cases}\frac{3x-2y}{37}=0\\\frac{5y-3z}{15}=0\end{cases}\Leftrightarrow\hept{\begin{cases}3x-2y=0\\5y-3z=10\end{cases}\Leftrightarrow}\hept{\begin{cases}3x=2y\\5y=3z\end{cases}\Leftrightarrow}\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}\\\frac{y}{3}=\frac{z}{5}\end{cases}\Leftrightarrow}\frac{x}{2}=\frac{y}{3}=\frac{z}{5}}\)
\(\Leftrightarrow\frac{10x}{20}=\frac{3y}{9}=\frac{2z}{10}\)
Áp dụng tính của dãy tỉ số bằng nhau:
\(\Leftrightarrow\frac{10x}{20}=\frac{3y}{9}=\frac{2z}{10}=\frac{10x-3y-2z}{20-9-10}=-\frac{4}{1}\)
\(\Leftrightarrow\hept{\begin{cases}\frac{x}{2}=-4\\\frac{y}{3}=-4\\\frac{z}{5}=-4\end{cases}\Leftrightarrow\hept{\begin{cases}x=-8\\y=-12\\z=-20\end{cases}}}\)