K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 8 2020

pt <=> \(x^2\left(y^2-1\right)+x\left(-y\right)-2y^2=0\)

Xét: \(\Delta=y^2-4\left(y^2-1\right).-2y^2=y^2+8y^2\left(y^2-1\right)\)

\(\Delta=8y^4-7y^2\)

Do để pt có nghiệm => \(\Delta\)là 1 SCP

=> \(8y^4-7y^2\)là 1 SCP

=> \(8z^2-7z\)là 1 SCP vs \(z=y^2\)

Đến đây dễ dàng tìm ra z => Ra y => Ra x

21 tháng 12 2017

\(2\sqrt{3}=\sqrt{4.3}=\sqrt{12}\)

\(3\sqrt{2}=\sqrt{9.2}=\sqrt{18}\)

do đó \(2\sqrt{3}< 3\sqrt{2}\)

26 tháng 12 2017

bạn hỏi chán thế bài này dễ mà hay bạn hỏi hộ người khác à

21 tháng 12 2017

- các cậu giúp mình với mai thứ 6 mình thi hk1 r huhu giúp mình với.........

\(P=\frac{a^2-bc}{\left(a+b\right)\left(a+c\right)}+\frac{b^2-ac}{\left(b+c\right)\left(b+a\right)}+\frac{c^2-ab}{\left(c+a\right)\left(c+b\right)}\)

\(P=\frac{\left(a^2-bc\right)\left(b+c\right)}{\left(a+b\right)\left(a+c\right)\left(b+c\right)}+\frac{\left(b^2-ac\right)\left(c+a\right)}{\left(b+c\right)\left(b+a\right)\left(c+a\right)}+\frac{\left(c^2-ab\right)\left(b+a\right)}{\left(c+a\right)\left(c+b\right)\left(b+a\right)}\)

\(P=\frac{a^2b+a^2c-b^2c-bc^2}{\left(a+b\right)\left(a+c\right)\left(b+c\right)}+\frac{b^2a+b^2c-a^2c-ac^2}{\left(b+c\right)\left(b+a\right)\left(c+a\right)}+\frac{c^2a+c^2b-a^2b-b^2a}{\left(c+a\right)\left(c+b\right)\left(b+a\right)}\)

\(P=\frac{0}{\left(a+b\right)\left(a+c\right)\left(b+c\right)}\)

\(P=0\)

25 tháng 12 2017

Xét: \(f\left(x\right)=\frac{x^2-bc}{\left(x+b\right)\left(x+c\right)}+\frac{b^2-xc}{\left(b+c\right)\left(b+x\right)}+\frac{c^2-xb}{\left(c+x\right)\left(c+b\right)}\)

\(\Rightarrow f\left(a\right)=P\)

Ta có: \(f\left(b\right)=\frac{b^2-bc}{2b\left(b+c\right)}+\frac{b^2-bc}{2b\left(b+c\right)}+\frac{c^2-b^2}{\left(c+b\right)\left(c+b\right)}\)

\(\Rightarrow f\left(b\right)=\frac{2b\left(b-c\right)}{2b\left(b+c\right)}+\frac{\left(c-b\right)\left(c+b\right)}{\left(c+b\right)\left(c+b\right)}=\frac{b-c}{b+c}+\frac{c-b}{c+b}=0\left(1\right)\)

Chứng minh tương tự ta cũng có: \(f\left(c\right)=0\left(2\right)\)

Từ (1) và (2) suy ra \(f\left(x\right)=0\left(\forall x\right)\Rightarrow f\left(a\right)=0\left(\forall x\right)\)

Vậy A =0

7 tháng 12 2021

B) Ta có tam giác EBF cân tại B nên \(\widehat{B}+2\widehat{E}=180\)

\(\widehat{EBF}+\widehat{ACD}=180\) suy ra \(\widehat{ACD}=2\widehat{E}\)

mặt khác \(\widehat{ACD}=2\widehat{PCQ}\) nên \(\widehat{E}=\widehat{F}=\widehat{PCQ}\)

tam giác EPC đồng dạng  với tam giácPCQ

tam giác PCQ đồng dạng tam giác ECQ

suy ra  tam giác EPC đồng dạng  tam giác FCQ

\(\Rightarrow\) PE.QF=CE.CF=:4

\(\Rightarrow2\sqrt{PE.QF}EF\)đpcm