Cho tam giác ABC nhọn có AB = c , AC = b , BC =a . Chứng minh rằng : \(a^2=b^2+c^2-2bc.\cos A\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Sửa đề: Cái phân số cuối cùng phải là \(\frac{1}{\sqrt{1998.1}}\) nha bạn :)
Giải: Ta thấy các số hạng của S đều có dạng \(\frac{1}{\sqrt{k\left(1999-k\right)}}\) với \(k\in N;1\le k\le1998\)
Áp dụng BĐT Cô-si dạng \(\sqrt{ab}\le\frac{a+b}{2}\) (Đẳng thức xảy ra khi và chỉ khi a = b) ta có
\(\frac{1}{\sqrt{k\left(1999-k\right)}}\ge\frac{1}{\frac{k+1999-k}{2}}=\frac{2}{1999}\)
Đẳng thức xảy ra \(\Leftrightarrow\) \(k=1999-k\) \(\Leftrightarrow\) \(k=\frac{1999}{2}\) (vô lý vì \(k\in N\)).
Do đó đẳng thức không xảy ra, hay \(\frac{1}{\sqrt{k\left(1999-k\right)}}>\frac{2}{1999}\)
Mà S có 1998 số dạng \(\Rightarrow\) \(S>2.\frac{1998}{1999}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a.\(\left(\sqrt{4+2\sqrt{3}}-\sqrt{4-2\sqrt{3}}\right).\left(\sqrt{4-2\sqrt{3}}+\sqrt{4+2\sqrt{3}}\right)\)
\(=\left(\sqrt{\left(\sqrt{3}+1\right)^2}-\sqrt{\left(\sqrt{3}-1\right)^2}\right).\left(\sqrt{\left(\sqrt{3}-1\right)^2}+\sqrt{\left(\sqrt{3}+1\right)^2}\right)\)
\(=\left(\sqrt{3}+1-\sqrt{3}+1\right)\left(\sqrt{3}-1+\sqrt{3}+1\right)\)
\(=2.2\sqrt{3}=4\sqrt{3}\)
b.\(\left(\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}\right)^2=\left[\frac{\sqrt{8+2\sqrt{7}}}{\sqrt{2}}-\frac{\sqrt{8-2\sqrt{7}}}{\sqrt{2}}\right]^2\)
\(=\left(\frac{\sqrt{\left(\sqrt{7}+1\right)^2}}{\sqrt{2}}-\frac{\sqrt{\left(\sqrt{7}-1\right)^2}}{\sqrt{2}}\right)^2\)
\(=\left(\frac{\sqrt{7}+1-\sqrt{7}+1}{\sqrt{2}}\right)^2=\left(\sqrt{2}\right)^2=2\)
c.\(\sqrt{5-\sqrt{3-\sqrt{29-12\sqrt{5}}}}=\sqrt{5-\sqrt{3-\sqrt{\left(2\sqrt{5}-3\right)^2}}}\)
\(=\sqrt{5-\sqrt{3-\left(2\sqrt{5}-3\right)}}=\sqrt{5-\sqrt{6-2\sqrt{5}}}\)
\(=\sqrt{5-\sqrt{\left(\sqrt{5}-1\right)^2}}=\sqrt{5-\sqrt{5}+1}=\sqrt{6-\sqrt{5}}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) (ac + bd)2 + (ad - bc)2 = (a2 + b2)(c2 + d2)
Ta có:
VT = a2c2 + 2abcd + b2d2 + a2d2 -2abcd + b2c2 = (a2c2 + a2d2) + (b2d2 + b2c2) = a2(c2 + d2) + b2(c2 + d2) = (a2 + b2)(c2 + d2) = VP
b)Ta có:
(a² + b²)(c² + d²) ≥ (ac + bd)²
<=> (ac)² + (ad)² + (bc)² + (bd)² ≥ (ac)² + 2abcd + (bd)²
<=> (ad)² + (bc)² ≥ 2abcd
<=> (ad)² - 2abcd + (bc)² ≥ 0
<=> (ad - bc)² ≥ 0
Dấu " = " xảy ra khi
![](https://rs.olm.vn/images/avt/0.png?1311)
Câu này t dùng vi-et giải được. Nhưng để mai đi. Giờ giải bằng điện thoại thì khó quá
![](https://rs.olm.vn/images/avt/0.png?1311)
Nửa chu vi hình vuông là :
18 x 2 = 36 (cm)
Chiều rộng hình chữ nhật là :
36 - 19 = 16 (cm)
Diện tích là :
16 x 19 = 304 (cm2)
chu vi hình chữ nhật là
18 x 4 = 72 (cm)
nửa chu vi là
72 : 2 = 36 (cm)
chiều rộng là
36 - 19 =15 (cm)
diện tích là
36 x 15 = 540 (cm2)
d/s 540 cm2
![](https://rs.olm.vn/images/avt/0.png?1311)
\(x^2+7x=810\)
\(\Leftrightarrow\left(x^2+2\cdot\frac{7}{2}\cdot x+\frac{49}{4}\right)=810+\frac{49}{4}\)
\(\Leftrightarrow\left(x+\frac{7}{2}\right)^2=\frac{3289}{4}\)
\(\Leftrightarrow\orbr{\begin{cases}x+\frac{7}{2}=\frac{\sqrt{3289}}{2}\\x+\frac{7}{2}=\frac{-\sqrt{3289}}{2}\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{\sqrt{3289}-7}{2}\\x=\frac{-\sqrt{3289}-7}{2}\end{cases}}\)