K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 12 2017

m, n ko chia hết cho 3 => Xét 2 trường hợp:

_m, n đều chia 3 dư 1

=> m=3k+1 ; n=3k'+1

=> m-n=(3k+1)-(3k'+1)=3k +1 - 3k'-1=3(k-k') chia hết cho 3

=> (m-n)(m+n) chia hết cho 3 hay m^2-n^2 chia hết cho 3(1)

_m chia 3 dư 1; n chia 3 dư 2(hoặc m chia 3 dư 2; n chia 3 dư 1)

Làm tương tự, xét tổng m+n chia hết cho 3

=> m^2-n^2 chia hết cho 3(2)

_Từ (1),(2)=> đpcm

25 tháng 12 2017

bn gặp hoàn cảnh đáng thương thật nhưng bn ko nên than vãn nhiều , như thế bn sẽ mãi nghĩ tiêu cực thôi ko tốt nha

27 tháng 12 2017

bn hãy cố gắng lên, đừng gục ngã, cho bà mẹ kế đó bt chọc đến bn thì kết cục sẽ như thế nào đi

mk mà có mẹ kế hay bắt nạt mk thì cái bà mẹ kế đừng mơ sống yên ổn trong cái nhà này

25 tháng 12 2017

Ta có: \(2\overline{xy}=\left(x+2\right)^2+\left(y+4\right)^2\)

\(\Leftrightarrow2\left(10x+y\right)=x^2+4x+4+y^2+8y+16\)

\(\Leftrightarrow x^2-16x+y^2+6y+20=0\)

\(\Leftrightarrow\left(x-8\right)^2+\left(y+3\right)^2=53\)

Ta thấy do x, y là các chữ số nên (x - 8)2 và (y + 3)2 đều là các số chính phương.

Ta có 53 = 49 + 4 và \(y+3\ge3\)

Vậy nên \(\hept{\begin{cases}x-8=2\\y+3=7\end{cases}}\Leftrightarrow\hept{\begin{cases}x=10\\y=4\end{cases}}\left(ktmđk\right)\)

Vậy không tồn tại số cần tìm.

24 tháng 12 2017

tiếp tục câu 2,vì máy bị lỗi nên phải tách ra:

Ta có:\(x^3+y^3+z^3-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)\)

\(=\left(x+y+z\right)\left(\left(x+y+z\right)^2-3\left(xy+xz+yz\right)\right).\)

Dó đó:\(x^3+y^3+z^3-3xyz+2010\left(x+y+z\right)\)

\(=\left(x+y+z\right)\left(\left(x+y+z\right)^2-3\left(xy+yz+xz\right)+2010\right)\)

\(=\left(x+y+z\right)^3.\)(2)

TỪ \(\left(1\right),\left(2\right)\)suy ra \(P\ge\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^3}=\frac{1}{x+y+z}.\)

Dấu \(=\)xảy ra khi \(x=y=z=\frac{\sqrt{2010}}{3}\)

24 tháng 12 2017

2)Ta có:

\(x\left(x^2-yz+2010\right)=x\left(x^2+xy+xz+1340\right)>0\)

Tương tự ta có:\(y\left(y^2-xz+2010\right)>0,z\left(z^2-xy+2010\right)>0\)

Áp dụng svac-xơ ta có:

\(P=\frac{x^2}{x\left(x^2-yz+2010\right)}+\frac{y^2}{y\left(y^2-xz+2010\right)}+\frac{z^2}{z\left(z^2-xy+2010\right)}\)

\(\ge\frac{\left(x+y+z\right)^2}{x^3+y^3+z^3-3xyz+2010\left(x+y+z\right)}.\)(1)

24 tháng 12 2017

https://olm.vn/hoi-dap/question/1117914.html

28 tháng 12 2017

ban vui long ko dang cau hoi linh tinh nhe

ban vui long ko dang cau hoi linh tinh nhe

ban vui long ko dang cau hoi linh tinh nhe

ban vui long ko dang cau hoi linh tinh nhe

ban vui long ko dang cau hoi linh tinh nhe

28 tháng 12 2017
thàng phúc im mom