with triangle ABC, d is the line passing through B, E of AC. Via E draw straight lines parallel to AB and BC cut d at M, N. D is the intersection of ME and BC. NE lines cut AB and MC at F and K. CMR AFN triangles are in the same form as the MDC triangle
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Gọi quãng đường AB là x( x >0)
\(\Rightarrow\)Thời gian ô tô chạy lúc đi là \(\frac{x}{40}\).(h)
Mà vận tốc của ô tô lúc về nhanh hơn vân tốc ô tô lúc đi nên vận tốc ô tô lúc về là : \(40+10=50\)(km/h)
\(\Rightarrow\)thời gian ô tô đi lúc về là : \(\frac{x}{50}\)
đổi 36 phút = \(\frac{3}{5}\)(h)
theo đề bài , thời gian lúc về ít hơn lúc đi \(\frac{3}{5}\)(h) nên ta có pt:
\(\frac{x}{40}-\frac{3}{5}=\frac{x}{50}\left(1\right)\)
giải pt (1) ta có: \(\frac{50x}{200}-\frac{120}{200}=\frac{40x}{200}\)
\(\Rightarrow\)\(50x-120=40x\)
\(\Rightarrow\)\(10x=120\)\(\Rightarrow\)\(x=12\left(tmđk\right)\)
vậy quãng đường AB dài 12 km
chúc bn buổi tối vui vẻ nha
Gọi \(x\left(km\right)\)là quãng đường \(AB,\left(x>0\right)\)
Thời gian lúc đi là:\(\frac{x}{40}\left(h\right)\)
Thời gian lúc về là:\(\frac{x}{50}\left(h\right)\)
Ta có PT:
\(\frac{x}{40}-\frac{x}{50}=\frac{3}{5}\) (đổi 36 phút = 3/5h)
\(\Leftrightarrow\frac{5x-4x}{200}=\frac{120}{200}\)
\(\Leftrightarrow x=120\left(n\right)\)
V...

Áp dụng bđt Cauchy-Schwarz
\(\frac{1}{2a+b+c}=\frac{1}{\left(a+b\right)+\left(a+c\right)}\le\frac{1}{4}\left(\frac{1}{a+b}+\frac{1}{a+c}\right)\)
\(\frac{1}{a+2b+c}=\frac{1}{\left(a+b\right)+\left(b+c\right)}\le\frac{1}{4}\left(\frac{1}{a+b}+\frac{1}{b+c}\right)\)
\(\frac{1}{a+b+2c}=\frac{1}{\left(a+c\right)+\left(b+c\right)}\le\frac{1}{4}\left(\frac{1}{a+c}+\frac{1}{b+c}\right)\)
Cộng theo vế =>đpcm

\(\frac{x+1}{2012}+\frac{x+2}{2011}=\frac{x+3}{2010}+\frac{x+4}{2009}\)
\(\Leftrightarrow\frac{x+1}{2012}+1+\frac{x+2}{2011}+1=\frac{x+3}{2010}+1+\frac{x+4}{2009}+1\)
\(\Leftrightarrow\frac{x+2013}{2012}+\frac{x+2013}{2011}=\frac{x+2013}{2010}+\frac{x+2013}{2009}\)
\(\Leftrightarrow\left(x+2013\right)\left(\frac{1}{2012}+\frac{1}{2011}-\frac{1}{2010}-\frac{1}{2009}\right)=0\Leftrightarrow x=-2013\)
\(\frac{x+1}{2012}+\frac{X+2}{2011}=\frac{X+3}{2010}+\frac{X+4}{2009}.\)
\(\Leftrightarrow\frac{X+1}{2012}+\frac{X+2}{2011}+2=\frac{X+3}{2010}+\frac{X+4}{2009}+2\)
\(\Leftrightarrow\frac{x+1}{2012}+1+\frac{x+2}{2011}+1=\frac{x+3}{2010}+1+\frac{x+4}{2009}+1\)
\(\Leftrightarrow\frac{x+2013}{2012}+\frac{x+2013}{2012}=\frac{x+2013}{2010}+\frac{x+2013}{2009}\)
\(\Leftrightarrow\left(x+2013\right).\left\{\frac{1}{2012}+\frac{1}{2011}-\frac{1}{2010}-\frac{1}{2009}\right\}=0\)
Mà \(\frac{1}{2012}+\frac{1}{2011}-\frac{1}{2010}-\frac{1}{2009}>0\)
\(\Leftrightarrow x+2013=0\)
\(\Leftrightarrow x=-2013\)
KL ; PT có Nghiệm \(S=\left\{-2013\right\}\)

Áp dụng bđt Bunyakovsky: \(\left(a+b+c\right)^2=\left(a\sqrt{a}.\frac{1}{\sqrt{a}}+b\sqrt{b}.\frac{1}{\sqrt{b}}+c\sqrt{c}.\frac{1}{\sqrt{c}}\right)^2\)
\(\le\left[\left(a\sqrt{a}\right)^2+\left(b\sqrt{b}\right)^2+\left(c\sqrt{c}\right)^2\right]\left[\left(\frac{1}{\sqrt{a}}\right)^2+\left(\frac{1}{\sqrt{b}}\right)^2+\left(\frac{1}{\sqrt{c}}\right)^2\right]\)
\(=\left(a^3+b^3+c^3\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)