Cho phương trình: x2 –(m+1)x+2m-3 =0 (1)
+ Chứng minh rằng phương trình trên luôn có 2 nghiệm phân biệt với mọi giá trị của m.
+ Tìm giá trị của m để phương trình (1) có nghiệm bằng 3.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi chữ số đơn vị là x (0 < x < 7)
Chữ số hàng chục là x + 2
Ví số cần tìm lớn hơn tổng các bình phương chữ số của nó là 1 đơn vị nên ta có phương trình :
10(x + 2) + x = (x + 2)2 + x2 + 1
Giải phương trình trên ta được x = 5 => x + 2 = 7
Số cần tìm là 75
\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=1+\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+1+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}+1\)
\(=3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)\)
Áp dung BĐT cô si cho 2 số không âm ta được:
\(\frac{a}{b}+\frac{b}{a}\ge2\sqrt{\frac{a}{b}.\frac{b}{a}}=2\)
\(\frac{a}{c}+\frac{c}{a}\ge2\sqrt{\frac{a}{c}.\frac{c}{a}}=2\)
\(\frac{b}{c}+\frac{c}{b}\ge2\sqrt{\frac{b}{c}.\frac{c}{b}}=2\)
Suy ra: \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge3+2+2+2=9\left(\text{ điều phải chứng minh}\right)\)
\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=a.\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)+b.\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)+c.\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(=1+\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+1+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}+1\)
\(=\left(1+1+1\right)+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)\)
Áp dụng tổng hai phân số nghịch đảo lớn hơn hoặc bằng 2 ta có :
\(3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)\ge3+2+2+2=9\)
=> ĐPCM
Theo tính chất tia phân giác ta có: \(\frac{AD}{CD}=\frac{AB}{BC}=\frac{3}{5}\Rightarrow\sin C=\frac{3}{5}=\cos B\).
\(\cos B=\frac{3}{5}\Rightarrow B\approx53^07'48,37"\Rightarrow ABD=26^033'54,18"\).
Ta có: \(AB=BD.\cos ABD=6\sqrt{5}.\cos26^033'54,18"=12\).
AB = 12 => AC = 20 .Aps dụng ĐL Py-ta-go ta có:
\(BC=\sqrt{AB^2+AC^2}=\sqrt{15^2+20^2}=25\)
P lớn nhất khi và chỉ khi \(\frac{9}{\sqrt{x^2+1}}\) lớn nhất mà \(\frac{9}{\sqrt{x^2+1}}>0\) nên \(\frac{9}{\sqrt{x^2+1}}\) lớn nhất khi và chỉ khi \(\sqrt{x^2+1}\) nhỏ nhất.
Mà \(\sqrt{x^2+1}\ge1\)(xảy ra đẳng thức khi x = 0). \(\Rightarrow P\le1+9=10\).
Vậy max P = 10 khi và chỉ khi x = 0
Đặt A = \(\frac{\sqrt{x}}{x+\sqrt{x}+1}\) => \(\frac{1}{A}=\frac{x+\sqrt{x}+1}{\sqrt{x}}=\sqrt{x}+1+\frac{1}{\sqrt{x}}\ge1+2\sqrt{\sqrt{x}\cdot\frac{1}{\sqrt{x}}}=3\)
Vậy GTNN của \(\frac{1}{A}=3\)
=> GTLN của A là \(\frac{1}{3}\) tại x = 1
Điều kiện : x + 1 > 0 <=> x > -1
\(\frac{x}{1+\sqrt{1+x}}=\frac{x\left(\sqrt{1+x}-1\right)}{\left(1+x\right)-1}=\sqrt{1+x}-1\)=> \(2+\frac{x}{1+\sqrt{1+x}}=\sqrt{1+x}+1\)
Tiếp tục như vậy ta có:
\(\frac{x}{2+\frac{x}{2+\frac{x}{2+\frac{x}{1+\sqrt{1+x}}}}}=\sqrt{1+x}-1\)
PT <=> \(\sqrt{1+x}-1=8\) <=> \(\sqrt{1+x}=9\) <=> 1 + x = 81 <=> x = 80 (Thỏa mãn)
Vậy....
Viết lại dãy số :21; 22; 23; 24; 25; 26; 27; ....
=> Số thứ 2190 của dãy số là: 22190
Ta có:
Quy luật:
Số hạng thứ nhất:2=21
Số hạng thứ hai:4=22
Số hạng thứ ba:8=23
Số hạng thứ tư:16=24
....
=>Số thứ n:n=2n
Số thứ 2190 của dãy là:
22190=......
Đặt \(\sqrt[3]{7-x}=a;\sqrt[3]{5-x}=b\) ( a + b \(\ne\) 0)
=> a3 + b3 = 12 - 2x = 2(6 - x) ; a3 - b3 = 2
PT <=> \(\frac{a-b}{a+b}=\frac{a^3+b^3}{2}\) <=> (a3 + b3)(a+ b) = 2(a - b)
Thế 2 = a3 - b3 ta được:
(a3 + b3)(a+ b) = (a3 - b3)(a - b)
<=> a4 + a3b + ab3 + b4 = a4 - a3b - ab3 + b4
<=> a3b + ab3 = - a3b - ab3
<=> 2(a3b + ab3) = 0 <=> ab.(a2+ b2) = 0 <=> ab = 0 hoặc a2 + b2 = 0
+) ab = 0 => a = 0 hoặc b = 0
Nếu a = 0 thì b3 = - 2 => \(b=-\sqrt[3]{2}\)
Nếu b = 0 thì a3 = 2 => \(a=\sqrt[3]{2}\)
+) a2 + b2 = 0 => a = b = 0 => Loại (vì a + b khác 0)
Vậy a = 0 hoặc b = 0
a = 0 => x = 7
b = 0 => x = 5
Vậy...........
+\(\Delta=\left[-\left(m+1\right)\right]^2-4.1.\left(2m-3\right)\)
\(=m^2+2m+1-8m+12=m^2-6m+13=\left(m-3\right)^2+4>0\)
\(\Delta>0\Rightarrow\text{phương trình (1) có 2 nghiệm phân biệt}\)
+x=3
PT(1) trở thành : \(3^2-\left(m+1\right).3+2m-3=0\)
\(\Leftrightarrow-3m-3+2m+6=0\)
\(\Leftrightarrow-m+3=0\Leftrightarrow m=3\text{ Vậy với x=3 thì m=3}\)