chứng minh rằng nếu x2−yzx(1−yz) =y2−xzy(1−yz) với x≠y,xyz≠0,yz≠1,xz≠1thì xy+yz+xz=xyz(x+y+z)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x+y+z=0\) => \(x+y=-z\) => \(\left(x+y\right)^2=z^2\)
=> \(x^2+2xy+y^2=z^2\)
=> \(z^2-x^2-y^2=2xy\)
Tương tự:
\(x^2-y^2-z^2=2yz\)
\(y^2-z^2-x^2=2zx\)
Thay vào tính M ta có:
\(M=\frac{x^2}{2yz}+\frac{y^2}{2zx}+\frac{z^2}{2xy}\)
\(=\frac{1}{2}\left(\frac{x^3+y^3+z^3}{xyz}\right)\) (*)
Ta lại có: x + y + z = 0
=> x + y = -z => \(\left(x+y\right)^3=-z^3\)
=> \(x^3+3x^2y+3xy^2+y^3=-z^3\)
=> \(x^3+y^3+z^3=-3x^2y-3xy^2\)
=> \(x^3+y^3+z^3=-3xy\left(x+y\right)\)
=> \(x^3+y^3+z^3=-3xy\left(-z\right)\) (vì x + y = -z)
=> \(x^3+y^3+z^3=3xyz\)
Thay vào (*) ta có:
\(M=\frac{1}{2}\frac{3xyz}{xyz}=\frac{3}{2}\)
Có : x^2-6x+10 = (x^2-6x+9)+1 = (x-3)^2 +1 >= 1
=> B <= 5/1 = 5
Dấu "=" xảy ra <=> x-3 = 0 <=> x=3
Vậy GTLN của B = 5 <=> x=3
k mk nha
Có : x^2-2x+5 = (x^2-2x+1)+4 = (x-1)^2+4 >= 4
=> A >= -8/4 = -2
Dấu "=" xảy ra <=> x-1 = 0 <=> x=1
Vậy GTNN của A = -2 <=> x-1 = 0 <=> x=1
k mk nha
A B C O M N K E F P Q I J
a) Xét \(\Delta\)AMC: OQ//AC (O\(\in\)AM; Q\(\in\)MC) => \(\frac{OM}{AM}=\frac{MQ}{MC}\)(1)
Tương tự, ta có: \(\frac{OM}{AM}=\frac{MJ}{BM}\)(2)
Từ (1) và (2) => \(\frac{OM}{AM}=\frac{MQ+MJ}{BM+MC}=\frac{JQ}{BC}\)(Tính chất dãy tỉ số bằng nhau)
Xét \(\Delta\)BNC: OQ//NC (O\(\in\)BN; Q\(\in\)BC) => \(\frac{ON}{BN}=\frac{QC}{BC}\)
Tương tự: \(\frac{OK}{CK}=\frac{BJ}{BC}\)
Vây \(\frac{OM}{AM}+\frac{ON}{BN}+\frac{OK}{CK}=\frac{JQ}{BC}+\frac{QC}{BC}+\frac{BJ}{BC}=\frac{BC}{BC}=1\)(đpcm).
b) Đề sai thì phải, theo mình nên sửa \(\frac{IJ}{AC}\)thành \(\frac{IJ}{AB}\)
Ta có: \(\frac{PQ}{AC}=\frac{BQ}{BC}\) và \(\frac{IJ}{AB}=\frac{CJ}{BC}\)(Hệ quả ĐL Thales)
\(\frac{EF}{BC}=\frac{OE}{BC}+\frac{OF}{BC}\)
Lại có: \(\frac{OE}{BC}=\frac{OK}{KC}=\frac{BJ}{BC}\); \(\frac{OF}{BC}=\frac{ON}{BN}=\frac{QC}{BC}\)
\(\Rightarrow\frac{EF}{BC}=\frac{BJ+QC}{BC}\)
\(\Rightarrow\frac{EF}{BC}+\frac{PQ}{AC}+\frac{IJ}{AB}=\frac{BJ+QC+BQ+CJ}{BC}=\frac{BJ+JQ+CJ+JQ+BJ+CJ}{BC}\)
\(=\frac{2BJ+2JQ+2CJ}{BC}=\frac{2.\left(BJ+JQ+CJ\right)}{BC}=\frac{2BC}{BC}=2\)
Vậy: \(\frac{EF}{BC}+\frac{PQ}{AC}+\frac{IJ}{AB}=2\)(đpcm).
áp dung bdt 1/x+1/y>=4/x+y ta co
\(\frac{a+c}{a+b}+\frac{b+d}{b+c}+...\)
=(a+c)(\(\frac{1}{a+b}+\frac{1}{c+d}\)) + (b+d)(\(\frac{1}{b+c}+\frac{1}{a+d}\))\(\ge\)\(\frac{4a+4c}{a+b+c+d}+\frac{4b+4d}{a+b+c+d}\)=4(dpcm)
= \(\left(a+c\right)\left(\frac{1}{a+b}+\frac{1}{c+d}\right)+\left(b+d\right)\left(\frac{1}{b+c}+\frac{1}{d+a}\right)\)
Áp dụng \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\left(x,y>0\right)\)
\(\ge\left(a+c\right)\left(\frac{4}{a+b+c+d}\right)+\left(b+d\right)\left(\frac{4}{a+b+c+d}\right)\)
\(\ge\frac{4\left(a+b+c+d\right)}{a+b+c+d}\)
Giả sử cả ba BĐT đều đúng, khi đó a(1−b)b(1−c)c(1−a)>164a(1−b)b(1−c)c(1−a)>164
Nhưng theo BĐT CauChy thì a(1−a)≤(a+1−a2)2=14a(1−a)≤(a+1−a2)2=14, tương tự ta có
a(1−b)b(1−c)c(1−a)≤164a(1−b)b(1−c)c(1−a)≤164, mâu thuẩn
Giả sử a(1-b),b(1-c),c(1-a)>1/4
=> a(1-b).b(1-c).c(1-a)>(1/4)3
=> a(1-a).b(1-b).c(1-c)>(1/4)^3
Ta có a(1-a)=1/4-(1/2-a)2<1/4
CMTT b(1-b), c(1-c) <1/4
=> a(1-b).b(1-c).c(1-a)<(1/4)3 trái với giả sử
=> 1 trong các BĐT sai
Đặt \(A=a^2+b^2+c^2+d^2+e^2\)
\(\Leftrightarrow4A=\left(a^2+4b^2\right)+\left(a^2+4c^2\right)+\left(a^2+4d^2\right)+\left(a^2+4e^2\right)\)
\(\Rightarrow4A\ge4ab+4ac+4ad+4ae\)
\(\Rightarrow A\ge a\left(b+c+d+e\right)\)
Vậy.......
Áp dụng x2+y2>=2xy Ta có:
a2/4+b2>=ab
a2/4+c2>=ac
a2/4+d2>=ad
a2/4+e2>=ae
=> a2+b2+c2+d2+e2>=a(b+c+d+e)
P (1) = a + b+ c = 0 => a +b = -c (1)
P(-1) = 6 => a - b + c = 6 => a - b = 6 -c (2)
LẤy (1) - (2) = > a + b - a + b = - c - 6 +c => 2b = - 6 => b = - 3
LẤy (1) + (2) ta có: a + b + a - b = -c + 6 - c => 2a = 6 - 2c => a = 3-c
P (-2) = 4a - 2b + c = 4 (3-c) - 2. -3 + c = 3 => 12 - 4c + 6 + c = 3 => 18 -3c = 3 => 3c = 15 => c = 5
a = 3 -c = 3-5 = -2
Vậy a =-2 ; b =-3 ; c= 5
k cho mk nha
Giả sử \(x=7k+z\left(z\in\left\{0,1,2,3,4,5,6\right\}\right)\)
Khi đó ta có:
\(x^3=\left(7k+z\right)^3=343k^3+147k^2z+21kz^2+z^3\)
\(=7\left(49k^3+21k^2z+3kz^2\right)+z^3\)
Vậy thì số dư của x3 khi chia cho 7 bằng số dư của x3 khi chia cho 7.
Ta có bảng:
z | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
z3 | 0 | 1 | 8 | 27 | 64 | 125 | 216 |
Số dư khi chia cho 7 | 0 | 1 | 1 | 6 | 1 | 6 | 6 |
Vậy x3 chia 7 chỉ có thể dư 0, 1, hoặc 6.