Tinh: a= \(\sqrt[3]{16-8\sqrt{5}}\)+\(\sqrt[3]{16+8\sqrt{5}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


đặt S=22n(22n+1-1)-1
=>2S=24n+2-22n+1-2
=24n+2+22n+2-1-3.22n+1-3
=(22n+1+1)2-3(22n+1+1)
=(22n+1+1)(22n+1-2)
=2(22n+1+1)(22n-1)
4 đồng dư với 1(mod 3)
=>22 đồng dư với 1(mod 3)
=>22n đồng dư với 1(mod 3)
=>22n+1 đồng dư với 2(mod 3)
=>22n+1+1 chia hết cho 3
22n-1 chia hết cho 3
=>S=2(22n+1+1)(22n-1) chia hết cho 9
=>đpcm

giả sử n^2+5n+16⋮169
⇒4n^2 + 20n + 64 ⋮ 169
⇒(2n+5)^2 + 39 ⋮ 169
⇒(2n+5)2^+39⋮13 (1)
mà 39⋮13
⇒(2n+5)^ 2⋮ 169 (2) từ (1) và (2) ta có: 39⋮169 ( vô lí)
⇒ đpcm

ta có:
\(S=\frac{a}{a^2+1}+\frac{5\left(a^2+1\right)}{2a}=\frac{a}{a^2+1}+\frac{a^2+1}{4a}+\frac{9\left(a^2+1\right)}{4a}\)
áp dụng bất đẳng thức Cauchy ta có:
\(\frac{a}{a^2+1}+\frac{a^2+1}{4a}\ge2\sqrt{\frac{a}{a^2+1}.\frac{a^2+1}{4a}}=2.\sqrt{\frac{1}{4}}=1\)
\(\frac{9\left(a^2+1\right)}{4a}\ge\frac{9.2a}{4a}=\frac{9}{2}\)
\(\Rightarrow S\ge\frac{9}{2}+1=\frac{11}{2}\)
Vậy \(Min_S=\frac{11}{2}\)khi a=1
bạn ơi tại sao lại là \(\frac{9\left(a^2+1\right)}{4a}=\frac{9.2a}{4a}\)

\(x^2+2y^2+3xy+8=9x+10y\)
\(\Leftrightarrow4x^2+8y^2+12xy+32-36x-40y=0\)
\(\Leftrightarrow4x^2+12x\left(y-3\right)+\left(8y^2-40y+32\right)=0\)
\(\Leftrightarrow4x^2+12x\left(y-3\right)+9\left(y-3\right)^2-\left(y^2-14y+49\right)=0\)
\(\Leftrightarrow\left[2x-3\left(y-3\right)\right]^2-\left(y-7\right)^2=0\)
\(\Leftrightarrow\left[2x-3\left(y-3\right)-\left(y-7\right)\right].\left[2x-3\left(y-3\right)+\left(y-7\right)\right]=0\)
\(\Leftrightarrow\left(2x-4y+16\right)\left(2x-2y+2\right)=0\)
\(\Leftrightarrow\left(x-2y+8\right)\left(x-y+1\right)=0\)
-TH1: \(x-2y+8=0\) \(\Leftrightarrow x=2y-8\) thay vào pt đề cho tìm được x, y.
Tương tự cho TH2

\(\sqrt{3+\sqrt{5}}-\sqrt{3-\sqrt{5}}-2\)
\(=\frac{\sqrt{6+2\sqrt{5}}}{\sqrt{2}}-\frac{\sqrt{6-2\sqrt{5}}}{\sqrt{2}}-2\)
\(=\frac{\sqrt{\left(\sqrt{5}+1\right)^2}}{\sqrt{2}}-\frac{\sqrt{\left(\sqrt{5}-1\right)}^2}{\sqrt{2}}-2\)
\(=\frac{\sqrt{5}+1}{\sqrt{2}}-\frac{\sqrt{5}-1}{\sqrt{2}}-2\)
\(=\frac{\sqrt{5}+1-\sqrt{5}+1}{\sqrt{2}}-2\)
\(=\frac{2}{\sqrt{2}}-2\)
\(=\frac{2-2\sqrt{2}}{\sqrt{2}}\)
\(=\frac{\sqrt{2}.\left(\sqrt{2}-2\right)}{\sqrt{2}}\)
\(=\sqrt{2}-2\)
.... Đúng thì ủng hộ nha ....
Đặt A= \(\sqrt{3+\sqrt{5}}\)- \(\sqrt{3-\sqrt{5}}\)- 2
<=>(A+2)^2 = 3+\(\sqrt{5}\)+ 3 - \(\sqrt{5}\)- 2. \(\sqrt{9-5}\)(A+2>0 do \(\sqrt{3+\sqrt{5}}\)> \(\sqrt{3-\sqrt{5}}\))
= 6 - 4 = 2
<=> A+2 = \(\sqrt{2}\) ( vì A+ 2>0)
<=> A= \(\sqrt{2}\)- 2

\(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}\\x_1x_2=\frac{c}{a}\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x_1+x_2=7\\x_1x_2=12\end{cases}\Leftrightarrow}x_{1,2}=3;4\)