K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 7 2018

a) Ta có: \(A=x^5-15x^4+16x^3-29x^2+13x\)

\(=\left(x^5-14x^4\right)-\left(x^4-14x^3\right)+\left(2x^3-28x^2\right)-\left(x^2-14x\right)-x\)

\(=x^4\left(x-14\right)-x^3\left(x-14\right)+2x^2\left(x-14\right)-x\left(x-14\right)-x\)

\(=\left(x-14\right)\left(x^4-x^3+2x^2-x\right)-x\)(thay x = 14)

\(=-x=-14\)

Vậy A = -14.

b) Ta có: \(B=x^{14}-10x^3+10x^{12}-10x^{11}+...+10x^2-10x+10\) tại x = 9.

\(\cdot x=9\Rightarrow10=x+1\)

\(\Rightarrow B=x^{14}-\left(x+1\right)x^{13}+\left(x+1\right)x^{12}-\left(x+1\right)x^{11}+...+\left(x+1\right)x^2-\left(x+1\right)x+10\)

\(=x^{14}-x^{14}-x^{13}+x^{13}+x^{12}-x^{13}-x^{12}+...+x^3+x^2-x^2-x+10\)

\(=-x-10=-9-10=-19.\)

Vậy B = -19.

21 tháng 8 2018

a) Ta có:

\(A=x^5-15x^4+16x^3-29x^2+13x\)

\(=\left(x^5-14x^4\right)-\left(x^4-14x^3\right)+\left(2x^3-28x^2\right)-\left(x^2-14x\right)-x\)

\(=x^4\left(x-14\right)-x^3\left(x-14\right)+2x^2\left(x-14\right)-x\left(x-14\right)-x\)

\(=\left(x-14\right)\left(x^4-x^3+2x^2-x\right)-x\)(thay \(x=14\))

\(=-x=-14\)

Vậy \(A=-14\)

b) Ta có:

\(B=x^{14}-10x^3+10x^{12}-10x^{11}+...+10x^2-10x+10\)tại \(x=9\)

\(x=9\Rightarrow10=x+1\)

\(\Rightarrow B=x^{14}-\left(x+1\right)x^{13}+\left(x+1\right)x^{12}-\left(x+1\right)x^{11}+...+\left(x+1\right)x^2-\left(x+1\right)x+10\)

\(=x^{14}-x^{14}-x^{13}+x^{13}+x^{12}-x^{13}-x^{12}+...+x^3+x^2-x^2-x+10\)

\(=-x-10=-9-10=-19\)

Vậy \(B=-19\)

11 tháng 7 2018

a) Ta có:

(x+y+z)(x-y-z) = x^2 -xy -xz +yx- y^2 -yz+zx -zy -z^2

=x^2 - y^2 - 2yz - z^2.

b) Ta có: (x-y+z)(x+y+z) = x^2 +xy+xz -yx-y^2 -yz +zx+zy +z^2

=x^2 +2xz- y^2 +z^2.

c) Ta có: -16 + (x-3)^2 = -16 + ( x^2-6x+9)

= -16 + x^2 - 6x + 9

= x^2 - 6x - 7.

11 tháng 7 2018

\(a,\left(x+y+z\right)\left(x-y-z\right)\)

\(=x\left(x-y-z\right)+y\left(x-y-z\right)+z\left(x-y-z\right)\)

\(=x^2-xy-xz+xy-y^2-yz+xz-yz-z^2\)

\(=x^2-y^2-2yz-z^2\)

\(b,\left(x-y+z\right)\left(x+y+z\right)\)

\(=x\left(x+y+z\right)-y\left(x+y+z\right)+z\left(x+y+z\right)\)

\(=x^2+xy+xz-xy-y^2-yz+xz+yz+z^2\)

\(=x^2+2xz-y^2+z^2\)

\(c,-16+\left(x-3\right)^2\)

\(=-16+x^2-6x+9\)

\(=x^2-6x-7\)

12 tháng 7 2018

\(a,x^2-2x=24\)

\(x^2-2x-24=0\)

\(x^2-2x+1-25=0\)

\(\left(x-1\right)^2=5^2=\left(-5\right)^2\)

\(x-1=5\)                     hoặc                           \(x-1=-5\)

\(\Rightarrow\hept{\begin{cases}x=6\\x=-4\end{cases}}\)

\(b,\left(2x-1\right)^2+\left(x+3\right)^2-5\left(x+7\right)\left(x-7\right)=0\)

\(4x^2-4x+1+x^2+6x+9-5\left(x^2-49\right)=0\)

\(4x^2-4x+1+x^2+6x+9-5x^2+245=0\)

\(2x+255=0\)

\(2x=-255\)

\(x=-\frac{255}{2}\)

11 tháng 7 2018

a/ \(x^2-2x=24\)

<=> \(x^2-2x+1-1=24\)

<=> \(\left(x-1\right)^2=25\)

<=> \(\orbr{\begin{cases}x-1=25\\x-1=-25\end{cases}}\)<=> \(\orbr{\begin{cases}x=26\\x=-24\end{cases}}\)

b/ \(\left(2x-1\right)^2+\left(x+3\right)^2-5\left(x+7\right)\left(x-7\right)=0\)

<=> \(4x^2-4x+1+x^2+6x+9-5\left(x^2-49\right)=0\)

<=> \(4x^2-4x+1+x^2+6x+9-5x^2+245=0\)

<=> \(2x+255=0\)

<=> \(2x=-255\)

<=> \(x=-\frac{255}{2}\)

11 tháng 7 2018

giai giup minh dc ko minh dang can gap

11 tháng 7 2018

\(x^2+2x+5=x^2+2x+1+4=\left(x+1\right)^2+4\ge4>0\)

\(x^2+3x+6=x^2+3x+\frac{9}{4}+\frac{15}{4}=\left(x+\frac{3}{2}\right)^2+\frac{15}{4}\ge\frac{15}{4}>0\)

ai tích mình mình tích lại cho

ai tích mình mình tích lại cho

ai trả lời nhanh mình tích

ai tích mình mình tích lại cho

ai tích mình mình tích lại cho

11 tháng 7 2018

                           Em ko biết

11 tháng 7 2018

ai tích mình mình tích lại cho