K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 7 2017

Tournament of the Towns, 1993 :3

Cho x là no pt, by C-S:

\(a^2+b^2\ge\frac{\left(x^4+2x^2+1\right)^2}{x^2+x^6}\ge8\)

\(\Leftrightarrow\left(x^2-1\right)^4\ge0\) 

từ đây suy ra nghiệm :3

3 tháng 7 2017

à sorry mk gửi nhầm câu hỏi ==" :v

3 tháng 7 2017

hình như thừa cái căn ngoài cùng

3 tháng 7 2017

Đề đúng bạn ơi !!

3 tháng 7 2017

\(x\left(x-2\right)\left(x+2\right)\left(x+4\right)=m\)

\(\Leftrightarrow\left(x^2+2x\right)\left(x^2+2x-8\right)=m\)

Đặt \(x^2+2x=a\)

Để PT \(x^2+2x-a=0\)có 2 nghiệm phân biệt thì:

\(\Delta'=1+4a>0\)

\(\Leftrightarrow a>-0,25\)

Ta có:

\(a\left(a-8\right)=m\)

\(\Leftrightarrow a^2-8a-m=0\)

Chỉ cần phương trình này có 2 nghiệm dương phân biệt là xong.

Tự làm nhé.

3 tháng 7 2017

hình vẽ có đường cao AH = 32 à?

3 tháng 7 2017

ko BH=32

3 tháng 7 2017

1/ \(x-6\sqrt{x}-8=\left(\sqrt{x}-3+\sqrt{17}\right)\left(\sqrt{x}-3-\sqrt{17}\right)\)

2/ Bài này làm gì còn phân tích được nữa.

3 tháng 7 2017

2/ Giả sử:

\(\sqrt{n+2}-\sqrt{n+1}>\sqrt{n+1}-\sqrt{n}\)

\(\Leftrightarrow\sqrt{n+2}+\sqrt{n}>2\sqrt{n+1}\)

\(\Leftrightarrow2n+2+2\sqrt{n^2+2n}>4n+4\)

\(\Leftrightarrow\sqrt{n^2+2n}>n+1\)

\(\Leftrightarrow n^2+2n>n^2+2n+1\)

\(\Leftrightarrow0>1\) (sai)

Vậy \(\sqrt{n+2}-\sqrt{n+1}< \sqrt{n+1}-\sqrt{n}\)