M=\(\sin^242^o+\sin^243^o+\sin^244^o+\sin^245^o+\sin^246^o+\sin^247^o+\sin^248^o\)
Không dung máy tính tính M
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=\(\left(\frac{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{x}-\sqrt{y}}-\frac{\left(\sqrt{x}-\sqrt{y}\right)\left(x+\sqrt{xy}+y\right)}{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)}\right).\frac{\sqrt{x}+\sqrt{y}}{x-\sqrt{xy}+y}\)
\(=\left[\left(\sqrt{x}+\sqrt{y}\right)-\frac{x+\sqrt{xy}+y}{\sqrt{x}+\sqrt{y}}\right].\frac{\sqrt{x}+\sqrt{y}}{x-\sqrt{xy}+y}\)
\(=\frac{x+2\sqrt{xy}+y-x-\sqrt{xy}-y}{\sqrt{x}+\sqrt{y}}.\frac{\sqrt{x}+\sqrt{y}}{x-\sqrt{xy}+y}\)
\(=\frac{\sqrt{xy}}{x-\sqrt{xy}+y}\)
Mình gi rút gọn bạn tự hiểu nha:
\(\left(\frac{x-y}{\sqrt{x}-\sqrt{y}}+\frac{\sqrt{x^3}-\sqrt{y^3}}{y-x}\right):\frac{\left(\sqrt{x}-\sqrt{y}\right)^2+\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\)
=\(\left(\sqrt{x}-\sqrt{y}-\frac{\left(\sqrt{x}-\sqrt{y}\right)\left(x-\sqrt{xy}+y\right)}{x-y}\right).\frac{\sqrt{x}+\sqrt{y}}{x+y-\sqrt{xy}}\)
=\(\frac{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}{x+y-\sqrt{xy}}-\frac{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)\left(x+y-\sqrt{xy}\right)}{\left(x-y\right)\left(x+y-\sqrt{xy}\right)}\)
=
\(=\left(\frac{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{x}-\sqrt{y}}-\frac{\left(\sqrt{x}-\sqrt{y}\right)\left(x+\sqrt{xy}+y\right)}{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)}\right):\frac{x-2\sqrt{xy}+y+\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\)
\(=\left[\left(\sqrt{x}+\sqrt{y}\right)-\frac{x+\sqrt{xy}+y}{\sqrt{x}+\sqrt{y}}\right].\frac{\sqrt{x}+\sqrt{y}}{x-\sqrt{xy}+y}\)
\(=\frac{x+2\sqrt{xy}+y-x-\sqrt{xy}-y}{\sqrt{x}+\sqrt{y}}.\frac{\sqrt{x}+\sqrt{y}}{x-\sqrt{xy}+y}=\frac{\sqrt{xy}}{x-\sqrt{xy}+y}\)
Để PT có 2 nghiệm phân biệt thì
\(\Delta'=\left(m-2\right)^2-\left(m^2-2m+4\right)>0\)
\(\Leftrightarrow m< 0\)
Theo vi et ta có:
\(\hept{\begin{cases}x_1+x_2=-2m+4\\x_1.x_2=m^2-2m+4\end{cases}}\)
Theo đề bài thì
\(\frac{2}{x_1^2+x_2^2}-\frac{1}{x_1.x_2}=\frac{15}{m}\)
\(\Leftrightarrow\frac{2}{\left(x_1+x_2\right)^2-2x_1.x_2}-\frac{1}{x_1.x_2}=\frac{15}{m}\)
\(\Leftrightarrow\frac{2}{\left(-2m+4\right)^2-2\left(m^2-2m+4\right)}-\frac{1}{m^2-2m+4}=\frac{15}{m}\)
\(\Leftrightarrow\frac{1}{m^2-6m+4}-\frac{1}{m^2-2m+4}=\frac{15}{m}\)
\(\Leftrightarrow15m^4-120m^3+296m^2-480m+240=0\)
Với m < 0 thì VP > 0
Vậy không tồn tại m để thỏa bài toán.
\(\frac{\left(5\sqrt{3}+\sqrt{50}\right)\left(5-\sqrt{24}\right)}{\sqrt{75}-5\sqrt{2}}\)
\(=\frac{\left(5\sqrt{3}+5\sqrt{2}\right)\left(5-2\sqrt{6}\right)}{5\sqrt{3}-5\sqrt{2}}\)
\(=\frac{5\left(\sqrt{3}+\sqrt{2}\right)\left(3-2.\sqrt{3}.\sqrt{2}+2\right)}{5\left(\sqrt{3}-\sqrt{2}\right)}\)
\(=\frac{5\left(\sqrt{3}+\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right)^2}{5\left(\sqrt{3}-\sqrt{2}\right)}\)
\(=\left(\sqrt{3}+\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right)=1\)
DÀI QUÁ MK KO GHI ĐƯỢC NÊN VIẾT KQ LUÔN NHA !!!
ĐẲNG THỨC ĐÓ = 1 NHA Hatsune Miku !
a, \(\sqrt{\frac{\left(x-y\right)^2}{x^2}\cdot\frac{x}{x-y}}=\) \(\frac{x-y}{x}\)
b. \(\sqrt{\frac{\left(x+y\right)^2}{\left(x-y\right)^2}\cdot\frac{x-y}{x+y}}=\sqrt{\frac{x+y}{x-y}}\)
c.\(\sqrt{\frac{x^4}{\left(x-5\right)^2}\cdot\frac{x-5}{3x}}=\sqrt{\frac{x^3}{3\left(x-5\right)}}\)
\(-2\sqrt{-a}=\sqrt{\left(-2\right)^2\cdot-a}=\sqrt{-4a}\)
- Đề đầy đủ rồi nhé các bạn. KO CÓ cộng thêm căn xy bên phải đâu tại tớ nhìn bị thiếu á -.-
\(\hept{\begin{cases}x^2-4xy+y^2=1\\y^2-3xy=4\end{cases}}\)
\(\Rightarrow4x^2-16xy+4y^2=y^2-3xy\)
\(\Leftrightarrow4x^2-13xy+3y^2=0\)
\(\Leftrightarrow\left(4x-y\right)\left(x-3y\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}4x=y\\x=3y\end{cases}}\)
Từ đây mỗi trường hợp thế vào phương trình \(y^2-3xy=4\).
Ta thu được nghiệm cuối cùng là: \(\left(1,4\right),\left(-1,-4\right)\).
Giả sứ nếu x là số lớn nhất trong 3 chữ số. Ta sẽ lấy x, y để so sánh tạm nhé...
Từ đề bài ta có;
\(\sqrt{x+2011}+\sqrt{y+2012}+\sqrt{z+2013}=\sqrt{z+2011}+\sqrt{x+2012}+\)
\(\sqrt{y+2013}\)
\(\Leftrightarrow\sqrt{x+2012}-\sqrt{x+2011}+\sqrt{y+2013}-\sqrt{y+2012}=\sqrt{z+2012}-\)
\(\sqrt{z+2011}+\sqrt{z+2013}-\sqrt{z-2012}\)
\(\Leftrightarrow\frac{1}{\sqrt{x+2012}+\sqrt{x+2011}}+\frac{1}{\sqrt{x+2013}+\sqrt{x+2012}}=\)
\(\frac{1}{\sqrt{z+2012}+\sqrt{z+2011}}+\frac{1}{\sqrt{z+2013}+\sqrt{z+2012}}\)
Ta lại có
\(\frac{1}{\sqrt{x+2012}+\sqrt{x+2011}}\ge\frac{1}{\sqrt{z+2012}+\sqrt{z+2011}}\)
\(\frac{1}{\sqrt{y+2013}+\sqrt{y+2012}}\ge\frac{1}{\sqrt{z+2013}+\sqrt{z+2012}}\)
P/s; Mình ko chắc đâu nhé
Ta có \(\sin x=\cos\left(90^0-x\right)\)
\(\Rightarrow M=\left(\sin^242^0+\sin^248^0\right)+\left(\sin^243^0+\sin^247^0\right)+\left(\sin^244^0+\sin^246^0\right)+\sin^245^0\)
\(=\left(\sin^242^0+\cos^242^0\right)+\left(\sin^243^0+\cos^243^0\right)+\left(\sin^244^0+\cos^244^0\right)+\sin^245^0\)
\(=1+1+1+\left(\frac{\sqrt{2}}{2}\right)^2=3+\frac{1}{2}=\frac{7}{2}\)