K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đây là một hệ phương trình tuyến tính hai ẩn. Dưới đây là cách giải hệ phương trình:

Phương pháp thế

  1. Giải phương trình thứ nhất để tìm y:
    • 3x - y = 5
    • -y = 5 - 3x
    • y = 3x - 5
  2. Thay giá trị của y vào phương trình thứ hai:
    • -x + 2y = 10
    • -x + 2(3x - 5) = 10
    • -x + 6x - 10 = 10
    • 5x = 20
    • x = 4
  3. Thay giá trị của x vào phương trình y = 3x - 5 để tìm y:
    • y = 3(4) - 5
    • y = 12 - 5
    • y = 7

Vậy nghiệm của hệ phương trình là x = 4 và y = 7.

Phương pháp cộng đại số

  1. Nhân phương trình thứ hai với 3:
    • 3(-x + 2y) = 3(10)
    • -3x + 6y = 30
  2. Cộng phương trình mới với phương trình thứ nhất:
    • (3x - y) + (-3x + 6y) = 5 + 30
    • 5y = 35
    • y = 7
  3. Thay giá trị của y vào một trong hai phương trình ban đầu để tìm x:
    • 3x - 7 = 5
    • 3x = 12
    • x = 4

Vậy nghiệm của hệ phương trình là x = 4 và y = 7.

Kết luận

Hệ phương trình có nghiệm duy nhất là x = 4 và y = 7. Bạn có thể kiểm tra lại bằng cách thay x và y vào hai phương trình ban đầu, nếu cả 2 phương trình đều đúng thì kết quả là chính xác.

26 tháng 2

@H.quân nah kệ nó, nó chép AI mà=).

Bước 1: Đặt ẩn

  • Gọi x là số dãy ghế ban đầu trong phòng họp.
  • Gọi y là số chỗ ngồi trong mỗi dãy ghế ban đầu.

Bước 2: Lập phương trình từ thông tin đề bài

  • Tổng số chỗ ngồi trong phòng họp là 360, ta có phương trình: xy = 360 (1)
  • Nếu thêm cho mỗi dãy 4 chỗ ngồi và bớt đi 3 dãy thì số chỗ ngồi không thay đổi, ta có phương trình: (x - 3)(y + 4) = 360 (2)

Bước 3: Giải hệ phương trình

  1. Từ phương trình (1), ta có y = 360/x.
  2. Thay y = 360/x vào phương trình (2), ta được: (x - 3)(360/x + 4) = 360
  3. Mở ngoặc và đơn giản hóa phương trình:
    • 360 + 4x - 1080/x - 12 = 360
    • 4x - 1080/x - 12 = 0
    • 4x^2 - 12x - 1080 = 0
    • x^2 - 3x - 270 = 0
  4. Giải phương trình bậc hai:
    • (x - 18)(x + 15) = 0
    • x = 18 hoặc x = -15
  5. Vì số dãy ghế không thể âm, ta chọn x = 18.
  6. Thay x = 18 vào phương trình (1) để tìm y:
    • 18y = 360
    • y = 20

Kết luận

Ban đầu, số chỗ ngồi trong phòng họp được chia thành 18 dãy.

26 tháng 2

Cho hỏi. Đổi mật khẩu kiểu j vâyj mọi n

\(\left\{{}\begin{matrix}3x-y=5\\-x+2y=10\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}6x-2y=10\\-x+2y=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6x-2y-x+2y=10+10\\-x+2y=10\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}5x=20\\2y=x+10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\2y=4+10=14\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=7\end{matrix}\right.\)

25 tháng 2

Một gia đình có hai con có thể rơi vào bốn trường hợp:

  1. (T, T) - Cả hai con đều là trai
  2. (T, G) - Con đầu là trai, con thứ hai là gái
  3. (G, T) - Con đầu là gái, con thứ hai là trai
  4. (G, G) - Cả hai con đều là gái

Vì mỗi trường hợp có xác suất bằng nhau là 1/4, nên biến cố A: "Gia đình có ít nhất một con gái" bao gồm các trường hợp (T, G), (G, T) và (G, G).

Xác suất gia đình đó có con gái là 1/4+1/4+1/4=3/4=75%

Chắc chắn rồi, hãy cùng phân tích bài toán này:

1. Không gian mẫu:

  • Giả sử gia đình có hai con. Mỗi lần sinh, có hai khả năng: con trai (T) hoặc con gái (G).
  • Vậy, không gian mẫu (tất cả các trường hợp có thể xảy ra) là:
    • TT (hai con trai)
    • TG (con trai đầu, con gái sau)
    • GT (con gái đầu, con trai sau)
    • GG (hai con gái)
  • Tổng cộng có 4 trường hợp có thể xảy ra.

2. Biến cố A: Gia đình có con gái:

  • Các trường hợp thỏa mãn biến cố A là:
    • TG
    • GT
    • GG
  • Vậy, có 3 trường hợp thỏa mãn biến cố A.

3. Tính xác suất:

  • Xác suất của biến cố A (P(A)) được tính bằng công thức:
    • P(A) = Số trường hợp thỏa mãn A / Tổng số trường hợp có thể xảy ra
    • P(A) = 3 / 4

Kết luận:

  • Xác suất để một gia đình có hai con có ít nhất một con gái là 3/4 hay 75%.
DD
24 tháng 5 2022

a) \(\widehat{AED}=\widehat{AFD}=90^o\) nên \(E,F\) cùng nhìn \(AD\) dưới góc vuông suy ra \(AEDF\) nội tiếp. 

suy ra \(\widehat{AEF}=\widehat{ADF}\).

mà \(\widehat{ADF}=\widehat{ACD}\) (vì cùng phụ với góc \(\widehat{DAC}\))

suy ra \(\widehat{AEF}=\widehat{ACD}\Rightarrow\widehat{BEF}+\widehat{FCB}=180^o\) suy ra \(BEFC\) nội tiếp.

b) \(\Delta GBE\sim\Delta GFC\left(g.g\right)\)

suy ra \(GB.GC=GE.GF\).

\(\Delta GDE\sim\Delta GFD\left(g.g\right)\)

suy ra  \(GD^2=GE.GF\).

\(ACBH\) nội tiếp suy ra \(GB.GC=GH.GA\)

suy ra \(GD^2=GH.GA\)

\(\Rightarrow\Delta GHD\sim\Delta GDA\left(c.g.c\right)\)

\(\Rightarrow\widehat{GHD}=\widehat{GDA}=90^o\)

suy ra \(DH\) vuông góc với \(AG\)

 

22 tháng 11 2024

Ta có: \(A=2\sqrt{12}-\sqrt{48}+3\sqrt{27}-\sqrt{108}\)

\(=2\cdot2\sqrt{3}-4\sqrt{3}+3\cdot3\sqrt{3}-6\sqrt{3}\)

\(=4\sqrt{3}-4\sqrt{3}+9\sqrt{3}-6\sqrt{3}\)

\(=3\sqrt{3}\)

7 tháng 12 2024

A=4\(\sqrt{3}\)-4\(\sqrt{3}\)+9\(\sqrt{3}\)-6\(\sqrt{3}\)

A=                     3\(\sqrt{3}\)

21 tháng 2

gọi x; y lần lượt là số chi tiết mà tổ 1 và tổ 2 sản xuất trong tháng đầu (ĐK: 0 < x; y < 300)

theo đề 2 tổ sản xuất đc 300 chi tiết nên: x + y = 300 (1)

số chi tiết tổ 1 vượt là: \(x\cdot\left(1+15\%\right)=1,15x\)

số chi tiết tổ 2 vượt là: \(y\cdot\left(1+20\%\right)=1,2y\)

mà cả 2 tổ sản xuất đc 352 chi tiết nên:

\(1,15x+1,2y=352\left(2\right)\)

từ (1) và (2) ta có hệ phương trình:

\(\left\{{}\begin{matrix}x+y=300\\1,15x+1,2y=352\end{matrix}\right.\)

giải ra ta được: \(\left\{{}\begin{matrix}x=160\left(TM\right)\\y=140\left(TM\right)\end{matrix}\right.\)

vậy tổ 1 sản xuất 160 chi tiết máy trong tháng đầu; tổ 2 sản xuất 140 chi tiết máy trong tháng đầu

20 tháng 2

a) Tìm \(M\) để đồ thị hàm số \(y = \left(\right. m + 1 \left.\right) x^{2}\) đi qua điểm \(A \left(\right. 2 , 4 \left.\right)\):

Để hàm số \(y = \left(\right. m + 1 \left.\right) x^{2}\) đi qua điểm \(A \left(\right. 2 , 4 \left.\right)\), ta thay giá trị \(x = 2\)\(y = 4\) vào phương trình hàm số:

\(y = \left(\right. m + 1 \left.\right) x^{2}\)

Thay \(x = 2\)\(y = 4\):

\(4 = \left(\right. m + 1 \left.\right) \cdot 2^{2}\) \(4 = \left(\right. m + 1 \left.\right) \cdot 4\) \(4 = 4 \left(\right. m + 1 \left.\right)\)

Chia cả hai vế cho 4:

\(1 = m + 1\) \(m = 0\)

Vậy giá trị của \(m\)0.

like minh nhe minh lam duoc cau a thôi

Để giải bài toán này, chúng ta sẽ thực hiện từng bước một.

a) Tìm \(m\) để đồ thị hàm số đi qua điểm \(A \left(\right. 2 , 4 \left.\right)\)

  1. Thay tọa độ điểm A vào hàm số:
    Hàm số cho trước là: \(y = \left(\right. m + 1 \left.\right) x^{2}\)Thay \(x = 2\)\(y = 4\): \(4 = \left(\right. m + 1 \left.\right) \left(\right. 2^{2} \left.\right)\)
  2. Giải phương trình:
    Tính giá trị \(2^{2}\): \(2^{2} = 4 \Rightarrow 4 = \left(\right. m + 1 \left.\right) \cdot 4\)Chia cả hai vế cho 4: \(1 = m + 1\)Trừ 1 từ cả hai vế: \(m = 0\)

Kết luận phần a:

  • Giá trị của \(m\) là \(0\).

b) Vẽ đồ thị hàm số \(y = \left(\right. m + 1 \left.\right) x^{2}\) với giá trị \(m\) vừa tìm được

  1. Thay giá trị \(m\) vào hàm số:
    Với \(m = 0\): \(y = \left(\right. 0 + 1 \left.\right) x^{2} = x^{2}\)
  2. Xác định các điểm trên đồ thị:
    • Khi \(x = - 2\)\(y = \left(\right. - 2 \left.\right)^{2} = 4\)
    • Khi \(x = - 1\)\(y = \left(\right. - 1 \left.\right)^{2} = 1\)
    • Khi \(x = 0\)\(y = 0^{2} = 0\)
    • Khi \(x = 1\)\(y = 1^{2} = 1\)
    • Khi \(x = 2\)\(y = 2^{2} = 4\)
  3. Vẽ đồ thị:
    Đồ thị của hàm số \(y = x^{2}\) là một parabol mở lên trên. Các điểm mà chúng ta đã tính sẽ giúp hình dung đồ thị:
    • Điểm \(\left(\right. - 2 , 4 \left.\right)\)
    • Điểm \(\left(\right. - 1 , 1 \left.\right)\)
    • Điểm \(\left(\right. 0 , 0 \left.\right)\)
    • Điểm \(\left(\right. 1 , 1 \left.\right)\)
    • Điểm \(\left(\right. 2 , 4 \left.\right)\)

Kết luận phần b:

  • Đồ thị của hàm số \(y = x^{2}\) là một parabol mở lên với đỉnh tại điểm \(\left(\right. 0 , 0 \left.\right)\).

Nếu bạn cần thêm thông tin hoặc có câu hỏi gì khác, hãy cho tôi biết!