Với mọi a,b>0 và a2+b2=4 hãy chứng minh: \(\frac{a+b}{\sqrt{a^2+4}}\le\sqrt{\frac{3}{2}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(A=\frac{\left(a^2+2\right)-1}{a^2+2}=1-\frac{1}{a^2+2}\)
Vì a2 + 2 > 0 + 2 với mọi a nên \(\frac{1}{a^2+2}\le\frac{1}{2}\)=> A = \(1-\frac{1}{a^2+2}\ge1-\frac{1}{2}=\frac{1}{2}\) với mọi a
Vậy A nhỏ nhất bằng 1/2 khi a = 0
![](https://rs.olm.vn/images/avt/0.png?1311)
Gọi hình chữ nhật là ABCD, nội tiếp đường tròn tâm O.
Vì tam giác ABC vuông tại B nên nội tiếp đường tròn đường kính AC, mà đường tròn đó chính là đường tròn tâm O ở trên
=> O là trung điểm AC.
Tương tự, O cũng là trung điểm BD.
b/ Chu vi lớn nhất.
Chu vi = 2(AB+BC) nên cần tìm giá trị AB+BC lớn nhất.
Mà ABC vuông tại B nên theo Pythagoras: \(AB^2+CB^2=AC^2=4R^2\)
Áp dụng bất đẳng thức \(\left(x-y\right)^2\ge0\Leftrightarrow\left(x+y\right)^2\le2\left(x^2+y^2\right)\Leftrightarrow x+y\le\sqrt{2\left(x^2+y^2\right)}\text{ }\left(x,y>0\right)\)
\(AB+BC\le\sqrt{2\left(AB^2+BC^2\right)}=\sqrt{8R^2}=2R\sqrt{2}=\text{không đổi.}\)
Dấu "=" xảy ra khi AB=BC <=> ABC vuông cân tại B <=> OB vuông góc AC <=> ABCD là hình vuông <=> ........ (bất cứ cái gí mình cần).
a/ Diện tích lớn nhất.
Tương tự như trên
\(S_{ABCD}=AB.BC\le\frac{AB^2+BC^2}{2}=2R^2\)
Dấu "=" xra khi AB=BC <=>....Hình vuông
![](https://rs.olm.vn/images/avt/0.png?1311)
\(B=\left[\left(\sqrt{a}+\sqrt{b}\right)^4+\left(\sqrt{c}+\sqrt{d}\right)^4\right]+\left[\left(\sqrt{a}+\sqrt{c}\right)^4+\left(\sqrt{b}+\sqrt{d}\right)^4\right]+\)
\(\left[\left(\sqrt{a}+\sqrt{d}\right)^4+\left(\sqrt{b}+\sqrt{c}\right)^4\right]\)\(\ge\frac{\left(a+b+2\sqrt{ab}+c+d+2\sqrt{cd}\right)^2+\left(a+c+2\sqrt{ac}+b+d+2\sqrt{bd}\right)^2+\left(a+d+2\sqrt{ad}+b+c+2\sqrt{bc}\right)^2}{2}\)
\(\ge\frac{\left(3a+3b+3c+3d+2\sqrt{ab}+2\sqrt{bc}+2\sqrt{ca}+2\sqrt{ad}+2\sqrt{cd}+2\sqrt{bd}\right)^2}{6}\)
\(=\frac{\left(\sqrt{a}+\sqrt{b}\right)^2+\left(\sqrt{b}+\sqrt{c}\right)^2+\left(\sqrt{c}+\sqrt{d}\right)^2+\left(\sqrt{a}+\sqrt{c}\right)^2+\left(\sqrt{a}+\sqrt{d}\right)^2+\left(\sqrt{b}+\sqrt{d}\right)^2}{6}\)
tiếp tục sử dụng như hỗi nãy ta có:
\(\ge\frac{\left(\sqrt{a}+\sqrt{b}+\sqrt{c}+\sqrt{d}\right)^2}{2}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(u^2=\left(2+\sqrt{3}\right)^2=7+4\sqrt{3}\)
=> \(u^3=u^2.u=\left(7+4\sqrt{3}\right)\left(2+\sqrt{3}\right)=26+15\sqrt{3}\)
và \(u^4=\left(7+4\sqrt{3}\right)^2=97+56\sqrt{3}\)
Vậy P = \(97+56\sqrt{3}-5\left(26+15\sqrt{3}\right)+6\left(7+4\sqrt{3}\right)-5\left(2+\sqrt{3}\right)\)
P = \(\left(97-130+42-10\right)+\left(56\sqrt{3}-75\sqrt{3}+24\sqrt{3}-5\sqrt{3}\right)\)
P = -1
![](https://rs.olm.vn/images/avt/0.png?1311)
Đặt \(\frac{x}{4}=\frac{y}{7}\) = k => x = 4k; y = 7k ( k khác 0)
Thay vào C ta được: \(C=\frac{\left(1+\sqrt{3}\right)\left(4k\right)^2.7k-\left(2-\sqrt{5}\right).4k.\left(7k\right)^2}{\left(4k\right)^3+\left(7k\right)^3}=\frac{\left(112.\left(1+\sqrt{3}\right)-196.\left(2-\sqrt{5}\right)\right).k^3}{407k^3}\)
\(C=\frac{112+112\sqrt{3}-392+196\sqrt{5}}{407}=\frac{112\sqrt{3} +196\sqrt{5}-280}{407}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
2 cách viết này giống nhau
chú ý: \(sin^2\alpha\ne sin\alpha^2\)
tớ viết lộn chỗ kia \(\left(\sqrt{2}.a.\frac{1}{\sqrt{2}}+b.1\right)^2\) thêm b.1 vô nka triều :D
Cậu ta lúc nào cũng câu hỏi tương tự