Chứng minh:
\(C=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{100}{3^{100}}< \frac{3}{4}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=2^{100}-2^{99}+2^{98}-2^{97}+...+2^2-2\)
\(2A=2^{101}-2^{100}+2^{99}-2^{98}+...+2^3-2^2\)
\(\Rightarrow A+2A=2^{101}-2\)
\(A\left(1+2\right)=2^{101}-2\)
\(A.3=2^{101}-2\)
\(A=\frac{2^{101}-2}{3}\)
b) \(B=3^{100}-3^{99}+3^{98}-3^{97}+...+3^2-3\)
\(3B=3^{101}-3^{100}+3^{99}-3^{98}+...+3^3-3^2\)
\(\Rightarrow B+3B=3^{101}-3\)
\(B\left(1+3\right)=3^{101}-3\)
\(4B=3^{101}-3\)
\(B=\frac{3^{101}-3}{4}\)
\(\frac{x}{y}=\frac{1,2}{2,5}\Rightarrow\frac{x}{y}=\frac{12}{25}\Rightarrow\frac{x}{12}=\frac{y}{25}\)
\(\Rightarrow\frac{x}{12}=\frac{y}{25}=\frac{y-x}{25-12}=\frac{26}{13}=2\)
\(\Rightarrow\hept{\begin{cases}x=2\cdot12=24\\y=2\cdot25=50\end{cases}}\)
vậy_
#)Giải :
Ta có : \(\frac{x}{y}=\frac{1,2}{2,5}\Rightarrow2,5x=1,2y\Rightarrow\frac{x}{1,2}=\frac{y}{2,5}\)
Áp dụng tính chất dãy tỉ số bằng nhau :
\(\frac{y}{2,5}=\frac{x}{1,2}=\frac{y-x}{2,5-1,2}=\frac{26}{1,3}=20\)
\(\hept{\begin{cases}\frac{x}{1,2}=20\\\frac{y}{2,5}=20\end{cases}\Rightarrow\hept{\begin{cases}x=24\\y=50\end{cases}}}\)
Vậy x = 24; y = 50
Trên tia đối của tia MG lấy điểm E sao cho MG=ME (Trên đề điểm E ko có tác dụng nên t lấy điểm E khác cho có tác dụng:V)
Ta có:
\(\Delta BGM=\Delta CEM\left(c.g.c\right)\)
\(\Rightarrow BG=CE;\widehat{BGM}=\widehat{MEC}\left(1\right)\)
Ta có:
\(\widehat{MFC}=\widehat{MAC}+\widehat{AMC}=\widehat{MAC}+\widehat{DAM}=\widehat{DAC}=\widehat{BAD}=\widehat{AGM}\left(2\right)\)
Từ \(\left(1\right);\left(2\right)\Rightarrow\widehat{MFC}=\widehat{MEC}\Rightarrow\Delta FEC\) cân tại C
\(\Rightarrow CF=CE\)
Mà \(CE=BG\Rightarrow CF=BG\left(đpcm\right)\)
Sửa dòng thứ 6;\(\widehat{MAC}+\widehat{AMF}\) nha mọi người,mik làm hơi tắt một tí;ai ko hiểu thì cứ ib vs mik nhoa!Thanks tth_new đã nhắc
a)
vì tam giác ABC vuông tại A
=> A=90độ
cạnh c có số độ là:
180-(60+90)=30(độ)
mà A=90 độ
B=60 độ
C=30 độ
=>A>B>C
4 9 | |
\(x-4\) | - 0 + | + |
\(x-9\) | - | - 0 + |
Xét khoảng x< 4 thì ( 4 -x ) +( 9 -x) = 5\(\Rightarrow13-2x=5\Leftrightarrow2x=8\Leftrightarrow x=4\left(KTM\right)\)
Xét khoảng \(4\le x\le9\)thì \(\left(x-4\right)+\left(9-x\right)=5\Leftrightarrow5=5\)(TM)
Xét khoảng x > 9 thì \(\left(x-4\right)+\left(x-9\right)=5\Leftrightarrow2x-13=5\Leftrightarrow2x=18\Leftrightarrow x=9\left(KTM\right)\)
Vậy dấu "="\(\Leftrightarrow4\le x\le9\)
Để M <0
TH1:
\(\hept{\begin{cases}x-1< 0\\x+2>0\\3-x>0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x< 1\\x>-2\\x< 3\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x< 1\\x>-2\end{cases}}\)\(\Leftrightarrow-2< x< 1\)(1)
TH2:
\(\hept{\begin{cases}x+1>0\\x+2< 0\\3-x>0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x>-1\\x< -2\\x>3\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x< -2\\x>3\end{cases}}\)( loại )
TH3:
\(\hept{\begin{cases}x+1>0\\x+2>0\\3-x< 0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x>-1\\x>-2\\x< 3\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x>-1\\x< 3\end{cases}\Leftrightarrow-1< x< 3}\)(2)
Từ (1) và (2) \(\Rightarrow-1< x< 3\)
( ko chắc )
Lâu rồi ko làm dạng này nên ko chắc đâu nhé!
Ta có: \(3C=1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{100}{3^{99}}\)
\(2C=3C-C=1+\frac{2-1}{3}+\frac{3-2}{3^2}+....+\frac{100-99}{3^{99}}-\frac{100}{3^{100}}\)
\(2C=\left(1-\frac{100}{3^{100}}\right)+\left(\frac{1}{3}+\frac{1}{3^2}+....+\frac{1}{3^{99}}\right)\)
Xét \(A=\left(\frac{1}{3}+\frac{1}{3^2}+....+\frac{1}{3^{99}}\right)\)
\(3A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}\)
\(2A=1-\frac{1}{3^{99}}< 1\Rightarrow A< \frac{1}{2}\) (1)
Và \(1-\frac{100}{3^{100}}< 1\) (2) (điều này hiển nhiên)
Từ (1) và (2) suy ra \(2C< 1+\frac{1}{2}=\frac{3}{2}\Rightarrow C< \frac{3}{4}^{\left(đpcm\right)}\)
Ok ko?