K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 11 2021

a, Xét tam giác DOB và tam giác IOA ta có : 

^DOB = ^IOA ( đối đỉnh ) 

^AIO = ^ODB ( DB // CA do cùng vuông AB và 2 góc này ở vị trí so le trong ) 

^OAI = ^OBD = 900 

Vậy tam giác DOB = tam giác IOA ( ch - gn ) 

=> OD = OI ( 2 góc tương ứng ) 

b, Xét tam giác ICD có CO vuông ID hay CO là đường cao 

Lại có IO = OD ( cmt ) => CO là đường trung tuyến 

=> tam giác ICD cân tại C => CI = CD (2) 

Mặt khác : tam giác DOB = tam giác IOA ( cmt ) => BD = IA (1) 

=> CI = AC + IA lại có (1) ; (2) => CD = AC + BD 

c, Dựng OH vuông CD 

Xét tam giác DHO và tam giác HBO ta có : 

^DHO = ^HBO = 900 

^HDO = ^ODB ( cùng ''='' ^CID ) 

OD _ chung 

Vậy tam giác DHO = tam giác HBO ( g.c.g ) 

=> OH = OB = R 

Vậy CD là tiếp tuyến đường tròn (O)  

ĐỂ phép tính k bị lẻ lên thay \(\frac{5}{4}.\sqrt{\frac{4}{5}}=\frac{5}{2}.\sqrt{\frac{4}{5}}\)

\(\left(5\sqrt{\frac{1}{5}}+\frac{1}{2}.\sqrt{20}-\frac{5}{2}.\sqrt{\frac{4}{5}}+\sqrt{5}\right):2\sqrt{5}\)

\(=\left(\sqrt{5}+\sqrt{5}-\sqrt{5}+\sqrt{5}\right):2\sqrt{5}=2\sqrt{5}:2\sqrt{5}=1\)

21 tháng 11 2021

\(\Delta ABC\)vuông tại A có \(\widehat{B}=45^0\left(gt\right)\)\(\Rightarrow\Delta ABC\)vuông cân tại A \(\Rightarrow AB=AC\)

Mà \(AB=1039m\left(gt\right)\Rightarrow AC=1039m\)

Vì vận tốc đi bộ không đổi, thời gian đi quãng đường CD lại gấp đôi thời gian đi quãng đường AD nên \(CD=2AD\Rightarrow\frac{AD}{CD}=\frac{1}{2}\)(1)

Lại có \(\Delta ACD\) vuông tại A \(\Rightarrow\)\(\cos\widehat{D}=\frac{AD}{CD}\)(2)

Từ (1) và (2) \(\Rightarrow\cos\widehat{D}=\frac{1}{2}\Rightarrow\widehat{D}=60^0\)

\(\Delta ACD\)vuông tại A \(\Rightarrow\sin D=\frac{AC}{CD}\Rightarrow\sin60^0=\frac{1039}{CD}\Rightarrow CD=\frac{1039}{\sin60^0}=\frac{1039}{\frac{\sqrt{3}}{2}}\approx1200\left(m\right)\)

Vậy thực tế bạn An đã đi quãng đường CD dài khoảng 1200m

21 tháng 11 2021

khó thế

20 tháng 11 2021

Bài 5 

a, Thay x = 3 vào pt (5) ta được : \(9-6m+m^2-m+1=0\Leftrightarrow m^2-7m+10=0\)

\(\Delta=49-40=9>0\)vậy pt có 2 nghiệm pb 

\(x_1=\frac{7-3}{2}=2;x_2=\frac{7+3}{2}=5\)

b, Để pt có 2 nghiệm pb khi \(\Delta'=m^2-m^2+m-1=m-1>0\Leftrightarrow m>1\)

Theo Vi et <=> \(\hept{\begin{cases}x_1+x_2=2m\\x_1x_2=m^2-m+1\end{cases}}\)

Vì \(x_1\)là nghiệm của pt (5) => \(x_1^2-2mx_1+m^2-m+1=0\Leftrightarrow x_1^2=2mx_1-m^2+m-1\)

Thay vào pt \(x_1^2+2mx_2-3x_1x_2-8=0\)ta được : 

\(\Leftrightarrow2mx_1-m^2+m-1+2mx_2-3x_1x_2-8=0\)

\(\Leftrightarrow2m\left(x_1+x_2\right)-3x_1x_2-9-m^2+m=0\)

Thay vào ta được : \(4m^2-3\left(m^2-m+1\right)-9-m^2+m=0\)

\(\Leftrightarrow4m^2-3m^2+3m-3-9-m^2+m=0\)

\(\Leftrightarrow4m-12=0\Leftrightarrow m=3\)( tmđk m > 1 ) 

20 tháng 11 2021

a, \(\hept{\begin{cases}x^2+y^2+3xy=5\\\left(x+y\right)\left(x+y+1\right)+xy=7\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(x+y\right)^2+xy=5\\\left(x+y\right)\left(x+y+1\right)+xy=7\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(x+y\right)^2-\left(x+y\right)\left(x+y+1\right)=-2\\\left(x+y\right)^2+xy=5\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(x+y\right)\left(x+y-x-y-1\right)=-2\\\left(x+y\right)^2+xy=5\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y=2\\4+xy=5\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=2-y\\4+\left(2-y\right)y=5\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2-y\\2y-y^2-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2-y\\-\left(y^2-2y+1\right)=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=2-y\\\left(y-1\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=1\end{cases}}}\)

Vậy hpt có nghiệm (x;y) = (1;1) 

20 tháng 11 2021

chào chị em lớp 7 ko bt làm

20 tháng 11 2021
=.................
20 tháng 11 2021

ai kết bẠN đi

20 tháng 11 2021

Ta có \(B=\frac{a^2+b^2}{a-b}=\frac{a^2+b^2-4+4}{a-b}=\frac{a^2+b^2-2ab}{a-b}+\frac{4}{a-b}=\left(a-b\right)+\frac{4}{a-b}\)

Áp dụng bất đẳng thức Cauchy cho 2 số không âm ta có : 

\(B=\left(a-b\right)+\frac{4}{a-b}=2\sqrt{\left(a-b\right).\frac{4}{a-b}}=4\)

Dấu "=" xảy ra <=> \(a-b=\frac{4}{a-b}\)

Kết hợp giả thiết => \(\hept{\begin{cases}a=\frac{\sqrt{12}+2}{2}\\b=\frac{\sqrt{12}-2}{2}\end{cases}}\)