\(\text{Chứng minh rằng trong một bình thang cân; bình phương của đường chéo bằng bình phương cạnh bên cộng với tích hai đáy}\)
\(\text{(Đề thi HSG Toán 8 huyện Gia Viễn - Tỉnh Ninh Bình)}\)
Mong thầy cô và các bạn giúp đỡ !!!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ĐK: \(x\ne-1\)
\(x.\frac{3-x}{x+1}\left(x+\frac{3-x}{x+1}\right)=2\)
\(\Leftrightarrow\frac{x^2\left(3-x\right)}{x+1}+\frac{x\left(3-x\right)^2}{\left(x+1\right)^2}-2=0\)
\(\Leftrightarrow\frac{\left(3x^2-x^3\right)\left(x+1\right)+x\left(9-6x+x^2\right)-2\left(x^2+2x+1\right)}{\left(x+1\right)^2}=0\)
\(\Leftrightarrow\left(3x^2-x^3\right)\left(x+1\right)+x\left(9-6x+x^2\right)-2\left(x^2+2x+1\right)=0\)
\(\Leftrightarrow-x^4+3x^3-5x^2+5x-2=0\)
\(\Leftrightarrow\left(x-1\right)\left(-x^3+2x^2-3x+2\right)=0\)
\(\Leftrightarrow\left(x-1\right)^2\left(-x^2+x-1\right)=0\)
Do \(-x^2+x-1\ne0\forall x\) nên \(x-1=0\Leftrightarrow x=1\)
b) Tương tự.
Ta có: \(\frac{-x^2-1}{x}< -1\)
\(\Rightarrow\frac{-x^2-1}{x}+1< 0\Rightarrow\frac{-x^2+x-1}{x}< 0\)
Ta thấy \(x^2-x+1>0\forall x\Rightarrow-x^2+x-1< 0\)
Vậy để \(\frac{-x^2+x-1}{x}< 0\) thì \(x>0\)
ta có : a^2 +b^2 =c^2 +d^2 => a^2 -c^2=d^2-b^2
<=> (a-c)(a+c)=(d-b)(d+b) (1)
Mặt khác : a+b=c+d => a-c=d-b (2)
Từ (1),(2) => (a-c)(a+c-d-b)=0
⇒[
a−c=0 |
a+c−d−b=0 |
xét TH1: a-c=0 =>a=c mà a+b=c+d => a=c ; b=d
=> a^2002 +b^2002 =c^2002 +d^2002 (đpcm
xét TH2: a+c-d-b=0
⇒{
a−b=d−c |
a+b=c+d |
⇒{
a=d |
b=c |
https://olm.vn/hoi-dap/question/1051251.html
vào đây mà gợi ý nhé
\(x^2+y^2+z^2-xy-3y-2z+4\ge0\)
\(\Leftrightarrow\)\(4x^2+4y^2+4z^2-4xy-12y-8z+16\ge0\)
\(\Leftrightarrow\)\(\left(4x^2-4xy+y^2\right)+3\left(y^2-4y+4\right)+\left(4z^2-8z+4\right)\ge0\)
\(\Leftrightarrow\)\(\left(2x-y\right)^2+3\left(y-2\right)^2+2\left(z-1\right)^2\ge0\)
Dấu "=" xảy ra \(\Leftrightarrow\) \(\hept{\begin{cases}2x-y=0\\y-2=0\\z-1=0\end{cases}}\) \(\Leftrightarrow\)\(\hept{\begin{cases}x=1\\y=2\\z=1\end{cases}}\)
gọi A là số cp cần tìm. Đặt A = k^2 ( 31 <k < 100)
Theo đề ra A + 1000 + 300 + 50 + 3 = n^2 (n>k) <=> k^2 + 1353 = n^2
<=> (n - k)(n +k) = 1353 = 3.11.41. vậy có các khả năng sau
(n - k) = 3 & ( n +k ) =451 loại vì n+k <200
(n- k) = 11 & (n+k) = 123 <=> n= 67, k = 56. thay vào A = 3136 = 56 ^2, A + 1353=4489=67^2. thỏa mãn
(n -k) = 33 & (n +k)=41 <=> n = 37 k=4 loại.
vậy số chính phương cần tìm là 3136
Gọi:
+abcd= x^2; (1)
+(a+1)(b+3)cd=k^2; (2)
(2) ó k^2= (a+1)*1000+(b+3)*100+c*10+d=a*1000+b*100+c*10+d+1300=abcd+1300=x^2+1300
ð k^2-x^2=1300 hay (k-x)(k+x)=1300 (1)
Mà 1000<k^2<9999 => 31<k<100. Và tương tự 31<x<100.
ð 62<k+x<200.
Mặt khác ta có (k-x)+(k+x)=2k nên từ (1) => (k-x) và k+x đều là các số chẵn
Mà 1300=13*(2^2)*(5^2)
=.> (k-x)(k+x)=2*650=10*130=26*50
Do k-x< k+x và 62<k+x<200 nên => (k-x)(k+x)=10*130
ð k-x=10 và k+x=130 hay k=70 và x=60;
ð abcd=3600. Thừ lại thõa mãn.
Đặt a= 1-x
b=1-y
c=1-z
\(\Rightarrow\) a+b+c= 1-x+1-y+1-z=0 và ;b;c=[-1;1]
khi đó A=(1-a)^4 + (1-b)^4 + (1-c)^4 + 12abc
=3-4(a+b+c) + 6 ( \(a^2+b^2+c^2\))-\(4\left(a^3+b^3+c^3\right)+a^4+b^4+c^4+12abc\)
=\(3+6\left(a^2+b^2+c^2\right)-4.3abc-12abc\) do\(\left(a^3+b^3+c^3=abc\right)\)
=\(3+6\left(a^2+b^2+c^2\right)+a^4+b^4+c^4\ge3\)
dấu bằng xảy ra khi a=b=c=0
\(\Leftrightarrow\)x=y=z=1
b) \(3^x-y^3=1\)
\(\Leftrightarrow3^x=y^3+1\left(1\right)\)
Từ pt(1) dễ dàng thấy được x=y=0
nếu x<0\(\Rightarrow3^x=\frac{1}{3^n}\left(n\in Nsao;n=-x\right)\)
\(\Rightarrow0< 3^x< 1\)Mà\(y^3+1\in Z\Rightarrow\) pt(1) không có nghiệm nhuyên
Nếu x>0\(\Leftrightarrow3^x⋮3\)
\(\Rightarrow\left(1\right)\Leftrightarrow3^x=\left(y+1\right)^3-3y\left(y+1\right)\)Mà \(3y\left(y+1\right)⋮3\Rightarrow\left(y+1\right)^3⋮3\Leftrightarrow y+1⋮3\)
Đặt y+1=3k=>y=3k-1 . Thay vào (1) ta được:
\(3^x=\left(3k-1\right)^3+1=9k\left(3k^2-3k+1\right)\)
\(\Rightarrow3k^2-3k+1\inƯ\left(3^x\right)\)Mà 3k2-3k+1 ko chia hết cho 3 và \(3k^2-3k+1=3\left(k-\frac{1}{2}\right)^2+\frac{1}{4}>0\)
\(\Rightarrow3k^2-3k+1=1\Rightarrow3k^2-3k=0\Rightarrow3k\left(k-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}k=0\Rightarrow3^x=0\left(loai\right)\\k=1\Rightarrow y=2\Rightarrow3^x=9\Rightarrow x=2\end{cases}}\)
Vậy (x;y)=(0;0);(2;2)
A B C D E M N O
Vẽ hình thang ABCD (AB//CD), giao điểm của AD và BC là E, giao điểm của AC và BD là O; M, N lần lượt là trung điểm của AB và DC.
Ta cần chứng minh E, M, O, N cùng thuộc một đường thẳng.
Gọi N' là giao điểm của EM với DC.
Do AB// CD nên áp dụng định lý Ta let cho các tam giác EDN' và EN'C , ta có:
\(\frac{AM}{DN'}=\frac{EM}{EN'}=\frac{BM}{N'C}\)
Lại có AM = BM nên DN' = N'C hay N' là trung điểm DC.
Suy ra N' trùng N hay E, M, N thẳng hàng.
Gọi N'' là giao điểm của MO với CD.
Do AB// CD nên áp dụng hệ quả định lý Ta let, ta có :
\(\frac{AM}{N''C}=\frac{MO}{ON''}=\frac{MB}{DN''}\)
\(\Rightarrow N''C=DN''\) hay N'' trùng N.
Vậy nên E, M, O, N thẳng hàng.
Với \(z=10\)ta có hệ pt \(\hept{\begin{cases}x+y=-10\\x-y=-11\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{-21}{2}\\y=\frac{1}{2}\end{cases}}\)
A B C D H K
Cho hình thang cân ABCD như hình vẽ với AH và BK là đường cao. Áp dụng pitago ta có:
\(\hept{\begin{cases}AC^2=AH^2+HC^2\\AD^2=AH^2+HD^2\end{cases}}\)
\(\Rightarrow AC^2-AD^2=HC^2-HD^2=\left(HC+HD\right)\left(HC-HD\right)=DC.AB\)
\(\Rightarrow AC^2=AD^2+AB.DC\)
PS: Bài có mấy dòng tự làm đi chứ nhok
bình phương của bn là tổng 2 bình phương đúng ko ?
nếu vậy thì đề bài là 2 lần tích 2 đáy chứ ????