1/2a^2 + 1 = 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
1.2.3.4.5.6.7.8.9 - 1.2.3.4.5.6.7.8 - 1.2.3.4.5.6.7 - 8²
= 1.2.3.4.5.6.7.(8.9 - 8 - 1) - 64
= 5040.63 - 64
= 317520 - 64
= 317456
\(1\times2\times3\times4\times5\times6\times7\times8\times9-1\times2\times3\times4\times5\times6\times7\times8-1\times2\times3\times4\times5\times6\times7-8^2\)
\(=1\times2\times3\times4\times5\times6\times7\times\left(8\times9-8-1\right)-64\)
\(=5040\times63-64\)
\(=317520-64\)
\(=317456\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Lời giải:
a.
$\frac{1}{a}+\frac{-1}{b}=\frac{1}{a-b}$
$\Rightarrow \frac{b-a}{ab}=\frac{1}{a-b}$
$\Rightarrow (b-a)(a-b)=ab$
$\Rightarrow -(a-b)^2=ab$
Với $a,b\in\mathbb{N}^*$, $ab>0$ còn $-(a-b)^2\leq 0$
Do đó $-(a-b)^2\neq ab$
$\Rightarrow$ không tồn tại $a,b\in\mathbb{N}^*$ thỏa mãn điều kiện đề.
b.
$\frac{5}{2a}=\frac{1}{6}+\frac{b}{3}$
$\frac{15}{6a}=\frac{1+2b}{6}=\frac{a+2ab}{6a}$
$\Rightarrow a+2ab=15$
$\Rightarrow a(1+2b)=15$
Do $a,b$ nguyên nên $a, 1+2b$ nguyên. Mà tích $a(1+2b)=15$ nên xét các TH sau:
TH1: $a=1, 2b+1=15\Rightarrow a=1; b=7$
TH2: $a=-1, 2b+1=-15\Rightarrow a=-1; b=-8$
TH3: $a=15, 2b+1=1\Rightarrow a=15; b=0$
TH4: $a=-15; 2b+1=-1\Rightarrow a=-15; b=-1$
TH5: $a=3, 2b+1=5\Rightarrow a=3; b=2$
TH6: $a=-3, 2b+1=-5\Rightarrow a=-3; b=-3$
TH7: $a=5; 2b+1=3\Rightarrow a=5; b=1$
TH8: $a=-5; 2b+1=-3\Rightarrow a=-5; b=-2$
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\dfrac{-5}{7}:\dfrac{15}{31}\)
\(=\dfrac{-5}{7}\cdot\dfrac{31}{15}\)
\(=\dfrac{-5\cdot31}{7\cdot15}\)
\(=\dfrac{-31}{7\cdot3}\)
\(=\dfrac{-31}{21}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\dfrac{-49}{81}\cdot\dfrac{27}{-77}\)
\(=\dfrac{-7^2}{3^2\cdot9}\cdot\dfrac{3\cdot9}{-7\cdot11}\)
\(=\dfrac{7}{3\cdot11}\)
\(=\dfrac{7}{33}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 3:
\(A=\dfrac{1}{2}+\dfrac{3}{2}+\left(\dfrac{3}{2}\right)^2+...+\left(\dfrac{3}{2}\right)^{2012}\)
Đặt: \(C=\dfrac{3}{2}+\left(\dfrac{3}{2}\right)^2+...+\left(\dfrac{3}{2}\right)^{2012}\)
\(\dfrac{3}{2}C=\left(\dfrac{3}{2}\right)^2+\left(\dfrac{3}{2}\right)^3+...+\left(\dfrac{3}{2}\right)^{2013}\)
\(\dfrac{3}{2}C-C=\left[\left(\dfrac{3}{2}\right)^2+\left(\dfrac{3}{2}\right)^3+...+\left(\dfrac{3}{2}\right)^{2013}\right]-\left[\dfrac{3}{2}+\left(\dfrac{3}{2}\right)^2+...+\left(\dfrac{3}{2}\right)^{2012}\right]\)
\(\dfrac{1}{2}C=\left(\dfrac{3}{2}\right)^{2013}-\dfrac{3}{2}\)
\(C=2\left[\left(\dfrac{3}{2}\right)^{2013}-\dfrac{3}{2}\right]\)
\(A=\dfrac{1}{2}+2\left[\left(\dfrac{3}{2}\right)^{2013}-\dfrac{3}{2}\right]\)
\(\Rightarrow B-A=\left(\dfrac{3}{2}\right)^{2023}:2-\dfrac{1}{2}-2\left[\left(\dfrac{3}{2}\right)^{2013}-\dfrac{3}{2}\right]\)
\(=\dfrac{\left(\dfrac{3}{2}\right)^{2023}}{2}-\dfrac{1+4\left[\left(\dfrac{3}{2}\right)^{2013}-\dfrac{3}{2}\right]}{2}\)
\(=\dfrac{\left(\dfrac{3}{2}\right)^{2023}-4\left(\dfrac{3}{2}\right)^{2013}-5}{2}\)
\(\dfrac{1}{2}a^2+1=2\)
\(\Rightarrow\dfrac{1}{2}a^2=2-1\)
\(\Rightarrow\dfrac{1}{2}a^2=1\)
\(\Rightarrow a^2=2\)
\(\Rightarrow a^2=\left(\sqrt{2}\right)^2\)
\(\Rightarrow a\in\left\{\sqrt{2};-\sqrt{2}\right\}\)
\(\dfrac{1}{2a^2+1}=2\)
\(2a^2+1=1\)
\(2a^2=0\)
\(a^2=0\)
\(a=0\)