CMR:
\(x^8-x^5+x^2-x+1>0\) với mọi số thực R
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Delta'=\left(m-1\right)^2-\left(2m-5\right)=m^2-2m+6=\left(m-1\right)^2+5>0\forall m\)
Vậy phương trình trên luôn có hai nghiệm phân biệt \(x_1;x_2\)
Theo hệ thức Viet ta có: \(\hept{\begin{cases}x_1+x_2=2m-2\\x_1.x_2=2m-5\end{cases}}\)
Khi đó \(x_1^2+x_2^2-\left(x_1+x_2\right)=\left(x_1+x_2\right)^2-\left(x_1+x_2\right)-2x_1x_2\)
\(=\left(2m-2\right)^2-\left(2m-2\right)-2\left(2m-5\right)=4m^2-14m+16\)
\(=\left(2m-\frac{7}{2}\right)^2+\frac{15}{4}\ge\frac{15}{4}\)
Vậy GTNN của biểu thức trên là \(\frac{15}{4}\) khi \(m=\frac{7}{4}.\)
phải là (m-1)^2-(2m-5)= m^2-4m+6 chứ có gì đó sai sai
ĐK: \(\orbr{\begin{cases}\sqrt{3}\le x\le\sqrt{10}\\-\sqrt{10}\le x\le-\sqrt{3}\end{cases}}\)
Đặt \(\hept{\begin{cases}\sqrt{10-x^2}=a\\\sqrt{x^2-3}=b\end{cases}}\left(a,b\ge0\right)\)
Khi đó ta có: \(\hept{\begin{cases}a+b=5\\a^2+b^2=7\end{cases}}\)
Thế phương trình bên trên xuống pt bên dưới ta có:
\(a^2+\left(5-a\right)^2=7\Leftrightarrow2a^2-10a+18=0\)
\(\Delta'=5^2-2.18=-11< 0\) nên pt vô nghiệm. Vậy pt đề bài cho vô nghiệm.
Vậy không tồn tại x thỏa mãn đề bài.
a) \(\Delta'=\left(m+1\right)^2-\left(m^2-3m\right)=5m+1\)
Để phương trình có nghiệm duy nhất thì \(\Delta'=0\Leftrightarrow5m+1=0\Leftrightarrow m=-\frac{1}{5}.\)
b) Phương trình có 2 nghiệm phân biệt thì \(5m+1>0\Leftrightarrow m>-\frac{1}{5}.\)
Theo hệ thức Viet ta có: \(\hept{\begin{cases}x_1+x_2=2\left(m+1\right)\\x_1.x_2=m^2-3m\end{cases}}\)
Ta có: \(\left(x_1-2\right)\left(x_2-2\right)=x_1^2+x_2^2\Leftrightarrow x_1x_2-2\left(x_1+x_2\right)+4=\left(x_1+x_2\right)^2-2x_1x_2\)
\(\Leftrightarrow m^2-3m-4\left(m+1\right)+4=4\left(m+1\right)^2-2m^2+6m\)
\(\Leftrightarrow m^2-7m=2m^2+14m+4\)
\(\Leftrightarrow m^2+21m+4=0\)
\(\Leftrightarrow\orbr{\begin{cases}m=\frac{-21+\sqrt{17}}{2}\left(tm\right)\\m=\frac{-21-\sqrt{17}}{2}\left(l\right)\end{cases}}\)
Vậy \(m=\frac{-21+\sqrt{17}}{2}\)
Ta có:
Với \(x=0\), \(y^2=3\Rightarrow P=3\)
Với \(y=0\Rightarrow x^2=3\Rightarrow P=3\)
Với \(x\ne0,y\ne0\) thì ta có: \(\frac{P}{3}=\frac{x^2+y^2}{x^2-xy+y^2}=\frac{\frac{x^2+y^2}{xy}}{\frac{x^2-xy+y^2}{xy}}=\frac{\frac{x}{y}+\frac{y}{x}}{\frac{x}{y}+\frac{y}{x}-1}\)
Đặt \(\frac{x}{y}=t\Rightarrow\frac{P}{3}=\frac{t+\frac{1}{t}}{t+\frac{1}{t}-1}=\frac{t^2+1}{t^2-t+1}\)
\(\Rightarrow Pt^2-Pt+P=3t^2+3\)
\(\Rightarrow\left(P-3\right)t^2-Pt+\left(P-3\right)=0\)
\(\Delta=P^2-4\left(P-3\right)^2=-3P^2+24P-36\)
Để \(\Delta\ge0\Rightarrow-3P^2+24P-36\ge0\Leftrightarrow2\le P\le6.\)
Khi P = 2 thì \(-t^2-2t-1=0\Leftrightarrow t=-1\Rightarrow\frac{x}{y}=-1\)
Vậy thì \(x^2+x^2+x^2=3\Rightarrow\orbr{\begin{cases}x=1,y=-1\\x=-1,y=1\end{cases}}\)
Vậy GTNN của P là 2 khi x = 1, y = -1 hoặc x = -1, y = 1
Ta có : \(\frac{a^3}{1+b}+\frac{1+b}{4}+\frac{1}{2}\ge3\sqrt[3]{\frac{a^3\left(1+b\right)}{8\left(1+b\right)}}=\frac{3}{2}a\)
\(\frac{b^3}{1+a}+\frac{1+a}{4}+\frac{1}{2}\ge3\sqrt[3]{\frac{b^3}{1+a}.\frac{1+a}{4}.\frac{1}{2}}=\frac{3}{2}b\)
Cộng các vế tương ứng lại ta được :
\(\frac{a^3}{1+b}+\frac{b^3}{1+a}+\frac{1}{4}\left(a+b\right)+\frac{3}{2}\ge\frac{3}{2}\left(a+b\right)\)
\(\Leftrightarrow\frac{a^3}{1+b}+\frac{b^3}{1+a}\ge\frac{5}{4}\left(a+b\right)-\frac{3}{2}\ge\frac{5}{4}.2\sqrt{ab}-\frac{3}{2}=1\)
Do đó \(P\ge1\)
Dấu \("="\) xảy ra \(\Leftrightarrow a=b=1\)
Ta có: \(x^2-x+1=x^2-2.x.\frac{1}{2}+\frac{1}{4}+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\forall x\in R\)
Thấy \(x^8\ge0;x^5< x^8\Rightarrow x^8-x^5\ge0\)
\(\Rightarrow x^8-x^5+x^2-x+1>0\forall x\in R.\)(đpcm)
sai rồi bạn ơi