Bài 5. (0,5 điểm) Giải phương trình ẩn $x$: $\dfrac{x-a}{bc}+\dfrac{x-b}{ca}+\dfrac{x-c}{ab}=\dfrac{2}{a}+\dfrac{2}{b}+\dfrac{2}{c}$ với $a, \, b, \, c \in \mathbb{R}$.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Với �=−1m=−1, hàm số trở thành �=−2�+1y=−2x+1.
Xét hàm số �=−2�+1y=−2x+1 :
Thay �=0x=0 thì �=1y=1.
Suy ra đồ thị hàm số �=−2�+1y=−2x+1 đi qua điểm có tọa độ (0;1)(0;1).
Thay �=1x=1 thì �=−1y=−1.
Vì đường thẳng (�):�=��+�(d):y=ax+b song song với đường thẳng (�′ ):�=−3�+9(d′ ):y=−3x+9 nên: �≠−3;�≠9a=−3;b=9.
Khi đó ta có: (�):�=−3�+�(d):y=−3x+b và �≠9b
khác 9.
Vì đường thẳng (�):�=��+�(d):y=ax+b đi qua �(1;−8)A(1;−8) nên: −8=−3.1+�−8=−3.1+b
Suy ra �=−5b=−5 (thoả mãn)
Vậy đường thẳng cần tìm là (�):�=−3�−5(d):y=−3x−5.
Suy ra đồ thị hàm số �=−2�+1y=−2x+1 đi qua điểm có tọa độ (1;−1)(1;−1).
Vẽ đồ thị:
Vì đường thẳng (�):�=��+�(d):y=ax+b song song với đường thẳng (�′ ):�=−3�+9(d′ ):y=−3x+9 nên: �≠−3;�≠9a
khác−3;b
khác 9.
Khi đó ta có: (�):�=−3�+�(d):y=−3x+b và �≠9b
khác 9.
Vì đường thẳng (�):�=��+�(d):y=ax+b đi qua �(1;−8)A(1;−8) nên: −8=−3.1+�−8=−3.1+b
Suy ra �=−5b=−5 (thoả mãn)
Vậy đường thẳng cần tìm là (�):�=−3�−5(d):y=−3x−5.
![](https://rs.olm.vn/images/avt/0.png?1311)
Gọi x (h) là thời gian người đó đi từ thành phố về quê (x > 0)
20 phút = 1/3 h
Thời gian người đó đi từ quê lên thành phố là: x + 1/3 (h)
Quãng đường đi từ thành phố về quê: 30x (km)
Quãng đường đi từ quê lên thành phố: 25(x + 1/3) (km)
Theo đề bài, ta có phương trình:
30x = 25(x + 1/3)
30x = 25x + 25/3
30x - 25x = 25/3
5x = 25/3
x = 25/3 : 5
x = 5/3 (nhận)
Vậy quãng đường từ thành phố về quê là: 30 . 5/3 = 50 km
![](https://rs.olm.vn/images/avt/0.png?1311)
a) 3x - 5 = 4
3x = 4 + 5
3x = 9
x = 9 : 3
x = 3
Vậy S = {3}
b) 2x/3 + (3x - 1)/6 = x/2
4x + 3x - 1 = 3x
7x - 3x = 1
4x = 1
x = 1/4
Vậy S = {1/4}
![](https://rs.olm.vn/images/avt/0.png?1311)
Lời giải:
a.
Tam giác $ABC$ vuông tại $B$ nên $\widehat{ABC}=90^0$
Xét tam giác $ABC$ có:
$\widehat{ABC}+\widehat{ACB}+\widehat{BAC}=180^0$ (tổng 3 góc trong 1 tam giác)
$\Rightarrow 90^0+30^0+\widehat{BAC}=180^0$
$\Rightarrow \widehat{BAC}=60^0$
b.
Xét tam giác $BAD$ và $EAD$ có:
$AD$ chung
$\widehat{BAD}=\widehat{EAD}$ (do $AD$ là phân giác $\widehat{A}$)
$\widehat{ABD}=\widehat{AED}=90^0$
$\Rightarrow \triangle BAD=\triangle EAD$ (ch-gn)
c.
Từ tam giác bằng nhau phần b suy ra $AB=AE$
$\Rightarrow ABE$ cân tại $A$
$\Rightarrow \widehat{ABE}=\widehat{AEB}$
Mà $\widehat{BAE}=60^0$ (kết quả phần a) nên:
$\widehat{ABE}=\widehat{AEB}=(180^0-\widehat{BAE}):2=(180^0-60^0):2=60^0$
Vậy $\widehat{ABE}=\widehat{AEB}=\widehat{BAE}=60^0$ nên $ABE$ là tam giác đều.
![](https://rs.olm.vn/images/avt/0.png?1311)
Lời giải:
a.
$A=32.7^2-22.7^2+90.7^2+25.4.51$
$=7^2(32-22+90)+100.51=49.100+100.51=100(49+51)=100.100=10000$
b.
\(X=\frac{1}{2.6}+\frac{1}{4.9}+\frac{1}{6.12}+...+\frac{1}{36.57}+\frac{1}{438.60}\\ =\frac{1}{(1.2).(2.3)}+\frac{1}{(2.2).(3.3)}+\frac{1}{(3.2)(4.3)}+...+\frac{1}{(18.2)(19.3)}+\frac{1}{(19.2).(20.3)}\)
\(=\frac{1}{2.3}(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{18.19}+\frac{1}{19.20})\)
$=\frac{1}{2.3}(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{19}-\frac{1}{20})$
$=\frac{1}{6}(1-\frac{1}{20})=\frac{19}{120}$
$B=2023-X=2023-\frac{19}{120}=2022\frac{101}{120}$
c/
$C=1+2023+2023^2+2023^3+...+2023^{2022}+2023^{2023}$
$2023C=2023+2023^2+2023^3+2023^4+...+2023^{2023}+2023^{2024}$
$\Rightarrow 2023C-C=2023^{2024}-1$
$\Rightarrow C=\frac{2023^{2024}-1}{2023}< 2023^{2024}-1$
$\Rightarrow C< D$
(x - a)/bc + (x - b)/ca + (x - c)/ab = 2/a + 2/b + 2/c
a(x - a) + b(x - b) + c(x - c) = 2bc + 2ac + 2ab
ax - a² + bx - b² + cx - c² = 2bc + 2ac + 2ab
(a + b + c)x = a² + b² + c² + 2bc + 2ac + 2ab
(a + b + c)x = (a + b + c)²
x = (a + b + c)²/(a + b + c)
x = a + b + c
Vậy S = {a + b + c}
Ta có: 𝑥−𝑎𝑏𝑐+𝑥−𝑏𝑐𝑎+𝑥−𝑐𝑎𝑏=2𝑎+2𝑏+2𝑐bcx−a+cax−b+abx−c=a2+b2+c2
(𝑥−𝑎𝑏𝑐−2𝑎)+(𝑥−𝑏𝑐𝑎−2𝑏)+(𝑥−𝑐𝑎𝑏−2𝑐)=0(bcx−a−a2)+(cax−b−b2)+(abx−c−c2)=0
𝑎(𝑥−𝑎)−2𝑏𝑐+𝑏(𝑥−𝑏)−2𝑐𝑎+𝑐(𝑥−𝑐)−2𝑎𝑏𝑎𝑏𝑐=0abca(x−a)−2bc+b(x−b)−2ca+c(x−c)−2ab=0
Điều kiện xác định: 𝑎,𝑏,𝑐≠0a,b,c=0
Khi đó: (𝑎+𝑏+𝑐)𝑥−𝑎2−2𝑏𝑐−𝑏2−2𝑐𝑎−𝑐2−2𝑎𝑏𝑎𝑏𝑐=0abc(a+b+c)x−a2−2bc−b2−2ca−c2−2ab=0
(𝑎+𝑏+𝑐)𝑥=(𝑎+𝑏+𝑐)2(a+b+c)x=(a+b+c)2
+ Nếu 𝑎+𝑏+𝑐=0a+b+c=0 thì phương trình có vô số nghiệm.
+ Nếu 𝑎+𝑏+𝑐≠0a+b+c=0 thì phương trình có nghiệm duy nhất 𝑥=𝑎+𝑏+𝑐x=a+b+c.