CMR
\(\left(2a+\frac{1}{b}+\frac{1}{c}\right)\left(2b+\frac{1}{c}+\frac{1}{a}\right)\left(2c+\frac{1}{a}+\frac{1}{b}\right)\ge64\left(\forall a,b,c>0\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
i don't now
mong thông cảm !
...........................
Cho tam giác ABC, phân giác BD, CE cắt nhau tại I. Biết BD.CE = 2.BI.CI. CMR: \(\widehat{BAC=90^o}\)
A B C D E I
Ta có bài toán phụ sau: Nếu \(\frac{a}{b}=\frac{c}{d}\) thì \(\frac{a}{a+b}=\frac{c}{c+d}\)
Chứng minh:
\(\frac{a}{b}=\frac{c}{d}\Rightarrow ad=bc\Leftrightarrow ac+ad=ac+bc\Leftrightarrow a\left(c+d\right)=c\left(a+b\right)\Rightarrow\frac{a}{a+b}=\frac{c}{c+d}\)
Áp dụng vào bài toán:
Theo t/c đường phân giác trong tam giác, ta có: \(\frac{CD}{AD}=\frac{BC}{AB}\)
\(\Rightarrow\frac{CD}{CD+AD}=\frac{BC}{BC+AB}\Rightarrow\frac{CD}{AC}=\frac{BC}{AB+BC}\Rightarrow CD=\frac{BC.AC}{AB+BC}\)(1)
Tương tự: \(BE=\frac{BC.AB}{BC+AC}\)(2)
Trong tam giác DBC có phân giác CI nên \(\frac{BI}{DI}=\frac{BC}{CD}\Rightarrow\frac{BI}{DI+BI}=\frac{BC}{CD+BC}\)(3)
Thế (1) vào (3), được
\(\Rightarrow\frac{BI}{BD}=\frac{BC}{BC+\frac{BC.AC}{AB+BC}}=\frac{BC}{\frac{BC.\left(AB+AC+BC\right)}{AB+BC}}=\frac{AB+BC}{AB+AC+BC}\)(*)
Lại có: \(\frac{CI}{EI}=\frac{BC}{BE}\Rightarrow\frac{CI}{CE}=\frac{BC}{BC+BE}\)(4)
Thế (2) vào (4) \(\Rightarrow\frac{CI}{CE}=\frac{BC}{BC+\frac{BC.AB}{BC+AC}}=\frac{BC}{\frac{BC\left(AB+AC+BC\right)}{BC+AC}}=\frac{BC+AC}{AB+AC+BC}\)(2*)
Nhân (*) với (2*) \(\Rightarrow\frac{BI.CI}{BD.CE}=\frac{\left(AB+BC\right)\left(BC+AC\right)}{\left(AB+AC+BC\right)^2}\).
Mà \(BD.CE=2.BI.CI\Rightarrow\frac{\left(AB+BC\right)\left(AC+BC\right)}{\left(AB+AC+BC\right)^2}=\frac{1}{2}\)
\(\Rightarrow2.\left(BC^2+AB.BC+AC.AB+AC.BC\right)=AB^2+AC^2+BC^2+2.\left(AB.BC+AC.AB+AC.BC\right)\)\(\Leftrightarrow2BC^2=AB^2+AC^2+BC^2\Leftrightarrow BC^2=AB^2+AC^2\)
Suy ra tam giác ABC vuông tại A (ĐL Pytago đảo). Hay ^BAC = 900 (đpcm).
A B C D O H
Hạ CH vuông góc với OB tại H. Theo quan hệ đường xiên hình chiếu:
\(CH\le OC\Leftrightarrow CH.OB\le OC.OB\Leftrightarrow2.S_{BOC}\le OC.OB\)(Do \(S_{BOC}=\frac{CH.OB}{2}\))
Áp dụng BĐT Cauchy, ta có: \(OC.OB\le\frac{OC^2+OB^2}{2}\)
\(\Rightarrow2.S_{BOC}\le\frac{OC^2+OB^2}{2}\left(1\right)\). Chứng minh tương tự ta được:
\(2.S_{AOB}\le\frac{OA^2+OB^2}{2}\left(2\right);2.S_{DOC}\le\frac{OD^2+OC^2}{2}\left(3\right);2.S_{AOD}\le\frac{OA^2+OD^2}{2}\left(4\right)\)
Cộng (1); (2); (3) và (4) theo vế:
\(2.\left(S_{BOC}+S_{AOB}+S_{DOC}+S_{AOD}\right)\le\frac{2.\left(OA^2+OB^2+OC^2+OD^2\right)}{2}\)
\(\Rightarrow2S\le OA^2+OB^2+OC^2+OD^2\)=> ĐPCM.
\(2.S_{BOC}\le OC.OB\). Dấu "=" xảy ra <=> OC vuông góc với OB
\(OC.OB\le\frac{OC^2+OB^2}{2}\). Dấu "=" xảy ra <=> OC=OB
Suy ra \(2.S_{BOC}\le\frac{OC^2+OB^2}{2}\). Dấu "=" xảy ra <=> \(\Delta\)BOC vuông cân tại O
Tương tự với các tam giác AOB; AOD; DOC.
Vậy dấu "=" xảy ra <=> Tứ giác ABCD là hình vuông và O là tâm của hình vuông này.
Ta có: \(x^2-x+1=x^2-2.x.\frac{1}{2}+\frac{1}{4}+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\forall x\in R\)
Thấy \(x^8\ge0;x^5< x^8\Rightarrow x^8-x^5\ge0\)
\(\Rightarrow x^8-x^5+x^2-x+1>0\forall x\in R.\)(đpcm)
Xin chào, bạn theo dõi lời giải của mình nhé
Áp dụng BĐT Holder và BĐT AM-GM ta có:
\(VT=\left(2a+\frac{1}{b}+\frac{1}{c}\right)\left(2b+\frac{1}{c}+\frac{1}{a}\right)\left(2c+\frac{1}{a}+\frac{1}{b}\right)\)
\(\ge\left(\sqrt[3]{2a\cdot2b\cdot2c}+\sqrt[3]{\frac{1}{b}\cdot\frac{1}{c}\cdot\frac{1}{a}}+\sqrt[3]{\frac{1}{c}\cdot\frac{1}{a}\cdot\frac{1}{b}}\right)^3\)
\(=\left(2\sqrt[3]{abc}+2\sqrt[3]{\frac{1}{abc}}\right)^3\)\(\ge\left(2\cdot2\sqrt{\sqrt[3]{abc}\cdot\sqrt[3]{\frac{1}{abc}}}\right)^3\)
\(=4^3=64=VP\)
Dấu "=" khi \(a=b=c\)