*Cho x,y,z>0 và x+y+z=1 , tìm GTNN của: \(S=\frac{1}{x}+\frac{4}{y}+\frac{9}{z}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
lập phương của 1 số tự nhiên là số x\(^3\)
tick mik nha
1.Vì số chính phương bằng bình phương của một số tự nhiên nên có thể thấy ngay số chính phương phải có chữ số tận cùng là một trong các chữ số 0 ; 1 ; 4 ; 5 ; 6 ; 9
2.
Một số chính phương được gọi là số chính phương chẵn nếu nó là bình phương của một số chẵn, là số chính phương lẻ nếu nó là bình phương của một số lẻ. (Nói một cách khác, bình phương của một số chẵn là một số chẵn, bình phương của một số lẻ là một số lẻ)
\(\Leftrightarrow2\left(p-a\right).2\left(p-b\right).2\left(p-c\right)\le abc\)
\(\Leftrightarrow\left(2p-2a\right)\left(2p-2b\right)\left(2p-2c\right)\le abc\)
\(\Leftrightarrow\left(b+c-a\right)\left(c+a-b\right)\left(a+b-c\right)\le abc\)
Đặt \(a+b-c=x;\text{ }b+c-a=y;\text{ }c+a-b=z\)
Thì \(a=\frac{x+z}{2};\text{ }b=\frac{y+x}{2};\text{ }c=\frac{z+y}{2}\)
Nên cần chứng minh:
\(xyz\le\frac{1}{8}\left(x+y\right)\left(y+z\right)\left(z+x\right)\)
Điều này là hiển nhiên khi ta áp dụng bđt Côsi cho VP.
Vậy ta có đpcm.
\(\Rightarrow-\left(x+5\right)-\sqrt{x+5}+x^2+3x+2=0\)
Đặt a = \(\sqrt{x+5}\left(a\ge0\right)\)
\(\Rightarrow-a^2-a+x^2+3x+2=0\)
Có: \(\Delta=1+4x^2+12x+8=4x^2+12x+9=\left(2x+3\right)^2\)
\(\Rightarrow\sqrt{\Delta}=2x+3\)
\(\Rightarrow a=\frac{1+2x+3}{-2}=-x-2\) hoặc \(a=\frac{1-2x-3}{-2}=1+x\)
+) Với a = -x - 2 => \(\sqrt{x+5}=-x-2\left(x\le-2\right)\)
\(\Rightarrow x+5=x^2+4x+4\)
\(\Rightarrow x^2+3x-1=0\)
\(\Rightarrow x=\frac{-3+\sqrt{13}}{2}\) (loại) hoặc \(x=\frac{-3-\sqrt{13}}{2}\) (nhận)
Với a = 1 + x \(\Rightarrow\sqrt{x+5}=1+x\left(x\ge-1\right)\)
\(\Rightarrow x+5=x^2+2x+1\)
\(\Rightarrow x^2+x-4=0\)
\(\Rightarrow x=\frac{-1+\sqrt{17}}{2}\) (nhận) hoặc \(x=\frac{-1-\sqrt{17}}{2}\) (loại)
Vậy x = \(\frac{-3-\sqrt{13}}{2};x=\frac{-1+\sqrt{17}}{2}\)
\(A=\sqrt{2x^2+5x+2}+2\sqrt{x+3}-2x\)
\(2A=2\sqrt{2x^2+5x+2}+4\sqrt{x+3}-4x\)
\(2A=2\sqrt{\left(2x+1\right)\left(x+2\right)}+4\sqrt{x+3}-4x\)
\(\le2x+1+x+2+4+x+3-4x=10\)
=>2A\(\le10\Rightarrow A\le5\)
dấu bằng xảy ra \(\Leftrightarrow2x+1=x+2\)
và x+3=4
=>x=1
maxA=5 khi x=1
Áp dụng bất đẳng thức Cosi, ta có:
1/x + 36x ≥ 2.√(1/x . 36x) = 12 (đẳng thức xảy ra khi 1/x = 36x hay x = 1/6) (1)
4/y + 36y ≥ 24 (đẳng thức xảy ra khi 4/y = 36y hay y = 1/3) (2)
9/z + 36z ≥ 36 (đẳng thức xảy ra khi 9/z = 36z hay z = 1/2) (3)
Cộng vế 3 bất đẳng thức (1),(2),(3) lại được:
1/x + 4/y + 9/z + 36(x + y + z) ≥ 12+24+36=72
<=> 1/x + 4/y + 9/z ≥ 72 - 36(x + y + z) = 36 (vì x + y + z = 1)
Vậy GTNN S = 36 khi x = 1/6; y = 1/3; z = 1/2
Đúng thì tick nhé !
mk ko bt