Cho ∆ABC cân tại A(A<90°) M là trung điểm của BC , kẻ MH vuông góc với AB(H thuộc AB), kẻ MK vuông góc với AC (K thuộc AC)
a. Chứng minh MH = MK
b. Chứng minh MH < MC
c. Chứng minh MK < AM
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
Do đó: ΔAHB=ΔAHC
=>\(\widehat{HAB}=\widehat{HAC}\)
mà \(\widehat{DHA}=\widehat{HAC}\)(DH//AC)
nên \(\widehat{DHA}=\widehat{DAH}\)
=>ΔDAH cân tại D
b: Ta có: \(\widehat{DHA}+\widehat{DHB}=90^0\)
\(\widehat{DAH}+\widehat{DBH}=90^0\)
mà \(\widehat{DHA}=\widehat{DAH}\)(ΔDAH cân tại D)
nên \(\widehat{DHB}=\widehat{DBH}\)
=>DH=DB
=>DA=DB
=>D là trung điểm của AB
Xét ΔABC có
AH,CD là các đường trung tuyến
AH cắt CD tại G
Do đó: G là trọng tâm của ΔABC
c: Xét ΔABC có
G là trọng tâm
Do đó: BG cắt AC tại trung điểm K của AC
TA có:
mà AB=AC
nên AD=DB=AK=KC
Xét ΔDBC và ΔKCB có
DB=KC
BC chung
Do đó: ΔDBC=ΔKCB
=>DC=BK
Xét ΔBAC có
G là trọng tâm
BK là đường trung tuyến
Do đó:
=>2BK=3BG
Trên tia đối của tia KB, lấy E sao cho KB=KE
Xét ΔKAE và ΔKCB có
KA=KC
(hai góc đối đỉnh)
KE=KB
Do đó: ΔKAE=ΔKCB
=>AE=CB
AH+3BG=AH+2BK=AH+BE<AB+BE<(AB+AE+AB)=AB+AC+BC
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
Do đó: ΔAHB=ΔAHC
=>\(\widehat{HAB}=\widehat{HAC}\)
mà \(\widehat{DHA}=\widehat{HAC}\)(DH//AC)
nên \(\widehat{DHA}=\widehat{DAH}\)
=>ΔDAH cân tại D
b: Ta có: \(\widehat{DHA}+\widehat{DHB}=90^0\)
\(\widehat{DAH}+\widehat{DBH}=90^0\)
mà \(\widehat{DHA}=\widehat{DAH}\)(ΔDAH cân tại D)
nên \(\widehat{DHB}=\widehat{DBH}\)
=>DH=DB
=>DA=DB
=>D là trung điểm của AB
Xét ΔABC có
AH,CD là các đường trung tuyến
AH cắt CD tại G
Do đó: G là trọng tâm của ΔABC
c: Xét ΔABC có
G là trọng tâm
Do đó: BG cắt AC tại trung điểm K của AC
TA có: \(AD=DB=\dfrac{AB}{2}\)
\(AK=KC=\dfrac{AC}{2}\)
mà AB=AC
nên AD=DB=AK=KC
Xét ΔDBC và ΔKCB có
DB=KC
\(\widehat{DBC}=\widehat{KCB}\)
BC chung
Do đó: ΔDBC=ΔKCB
=>DC=BK
Xét ΔBAC có
G là trọng tâm
BK là đường trung tuyến
Do đó: \(\dfrac{BG}{BK}=\dfrac{2}{3}\)
=>2BK=3BG
Trên tia đối của tia KB, lấy E sao cho KB=KE
Xét ΔKAE và ΔKCB có
KA=KC
\(\widehat{AKE}=\widehat{CKB}\)(hai góc đối đỉnh)
KE=KB
Do đó: ΔKAE=ΔKCB
=>AE=CB
AH+3BG=AH+2BK=AH+BE<AB+BE<(AB+AE+AB)=AB+AC+BC
a) Góc EAF là góc giữa hai đường trung trực của AB và AC. Do đó, góc EAF sẽ bằng 180o - góc A = 180o - 100o = 80o.
b) Để chứng minh AO là tia phân giác của góc EAF, ta cần chứng minh rằng góc EAO = góc FAO.
Ta biết rằng góc EAO = góc BAO = \(\dfrac{1}{2}\) góc BAC = \(\dfrac{1}{2}\cdot\) 100o = 50o (vì AO là đường trung trực của AB).
Tương tự, góc FAO = góc CAO = \(\dfrac{1}{2}\) góc CAB = \(\dfrac{1}{2}\cdot\) 100o = 50o (vì AO là đường trung trực của AC).
Vì góc EAO = góc FAO, nên AO là tia phân giác của góc EAF.
a: Xét ΔBAE vuông tại A và ΔBDE vuông tại D có
BE chung
BA=BD
Do đó: ΔBAE=ΔBDE
b: Xét ΔBFC có
FD,CA là các đường cao
FD cắt CA tại E
Do đó: E là trực tâm của ΔBFC
=>BE\(\perp\)FC
mà BE\(\perp\)BG
nên FC//BG
Thể tích bể:
200 . 20 = 4000 (l) = 4 (m³)
Chiều dài của bể:
0,8 . 2 = 1,6 (m)
Chiều cao của bể:
4 : 0,8 : 1,6 = 3,125 (m) ≈ 3,1 (m)
Lời giải:
Chiều dài bể nước: $0,8\times 2=1,6$ (m)
Thể tích của bể:
$200\times 20=4000$ (lít)
Đổi $4000$ lít = $4$ m3
Chiều cao của bể:
$4:0,8:1,6=3,1$ (m)
a: Xét ΔABD và ΔAMD có
AB=AM
\(\widehat{BAD}=\widehat{MAD}\)
AD chung
Do đó: ΔABD=ΔAMD
b: Ta có: ΔABD=ΔAMD
=>DB=DM
=>D nằm trên đường trung trực của BM(1)
Ta có: AB=AM
=>A nằm trên đường trung trực của BM(2)
Từ (1),(2) suy ra AD là đường trung trực của BM
=>AD\(\perp\)BM tại I và I là trung điểm của BM
c: Xét ΔKMP và ΔKAB có
KM=KA
\(\widehat{MKP}=\widehat{AKB}\)(hai góc đối đỉnh)
KP=KB
Do đó: ΔKMP=ΔKAB
=>\(\widehat{KMP}=\widehat{KAB}\)
=>MP//AB
a: Xét ΔABD vuông tại A và ΔABE vuông tại A có
AB chung
AD=AE
Do đó: ΔABD=ΔABE
=>BD=BE
BE là phân giác của góc ABC
=>\(\widehat{ABE}=\widehat{CBE}=\dfrac{\widehat{ABC}}{2}=30^0\)
ΔAEB vuông tại A
=>\(\widehat{AEB}+\widehat{ABE}=90^0\)
=>\(\widehat{AEB}+30^0=90^0\)
=>\(\widehat{AEB}=60^0\)
Xét ΔBDE có BD=BE và \(\widehat{BED}=60^0\)
nên ΔBDE đều
b: ΔBAE=ΔBAD
=>\(\widehat{EBA}=\widehat{DBA}=30^0\)
\(\widehat{DBC}=\widehat{DBA}+\widehat{ABC}=30^0+60^0=90^0\)
=>BD\(\perp\)BC
c: ΔEBC cân tại E
mà EK là đường cao
nên K là trung điểm của BC
=>KB=KC
d: Xét ΔBFC có
FK,CA là các đường cao
FK cắt CA tại E
Do đó: E là trực tâm của ΔBFC
=>BE\(\perp\)CF
ΔABC cân tại A
mà AD là đường trung tuyến
nên AD\(\perp\)BC
Xét ΔADB vuông tại D có DE là đường cao
nên \(DE\cdot AB=DA\cdot DB\)
\(\left(DE+AB\right)^2-\left(DA+DB\right)^2\)
\(=DE^2+AB^2+2\cdot DE\cdot AB-DA^2-DB^2-2\cdot DA\cdot DB\)
\(=DE^2+\left(AB^2-AB^2\right)=DE^2>0\)
=>\(\left(DE+AB\right)^2>\left(DA+DB\right)^2\)
=>DE+AB>DA+DB
a: Xét ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
Do đó: ΔAMB=ΔAMC
=>\(\widehat{BAM}=\widehat{CAM}\)
Xét ΔAHM vuông tại H và ΔAKM vuông tại K có
AM chung
\(\widehat{HAM}=\widehat{KAM}\)
Do đó: ΔAHM=ΔAKM
=>MH=MK
b: Ta có: MH=MK
mà MK<MC(ΔMKC vuông tại K)
nên MH<MC
c: ΔKAM vuông tại K
=>AM là cạnh lớn nhất trong ΔKAM
=>MK<AM