Cho k1 , k2 , k3 là các số thực; A,B,C là các biểu thức bất kì ;
Tổng hệ số tự do của phép lũy thừa(Gọi là M) : \(\left(k_1A+k_2B+k_3C\right)^n\)(với n là số tự nhiên khác 0)
CMR: \(M=\left(k_1+k_2+k_3\right)^n\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nghĩ ra cách lm rồi nên lại đăng lên!!!
Xét hiệu \(\left(x^2+1\right)^2-y^2=x^2\ge0\Rightarrow\left(x^2+1\right)^2\ge y\)
Xét hiệu \(y^2-\left(x^2\right)^2=x^2+1>0\Rightarrow y^2>\left(x^2\right)^2\Rightarrow\left(x^2\right)^2< y^2\le\left(x^2+1\right)^2\)
Do đó: \(y^2=\left(x^2+1\right)^2\)
Thay vào phương trình ban đầu ta đc:
\(x^4+x^2+1=\left(x^2+1\right)^2\Rightarrow x^2=0\Rightarrow x=0\)
\(\Rightarrow y^2=1\Rightarrow y=\orbr{\begin{cases}1\\-1\end{cases}}\)
ĐK: \(\hept{\begin{cases}1-a\ge0\\a\left(a-1\right)\ge0\\\frac{a-1}{a}\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}a\le1\\a\le0\vee a\ge1\\a< 0\vee a\ge1\end{cases}}\Leftrightarrow a< 0\)
Khi đó \(A=\sqrt{1-a}+\sqrt{a\left(a-1\right)}-\sqrt{\frac{a^2\left(a-1\right)}{a}}\)
\(=\sqrt{1-a}+\sqrt{a\left(a-1\right)}-\sqrt{a\left(a-1\right)}\)
\(=\sqrt{1-a}\)
Mk lm đc bài này rồi nên đăng lên,bn nào cần thì tham khảo nha!!
\(A=\frac{\sqrt{x}+1}{\sqrt{x}-1}.\sqrt{x}\)
\(=\frac{x+\sqrt{x}}{\sqrt{x}-1}\)
\(=\frac{x-1+\sqrt{x}-1+2}{\sqrt{x}-1}\)
\(=\sqrt{x}+2+\frac{2}{\sqrt{x}-1}\)
\(=\sqrt{x}-1+\frac{2}{\sqrt{x}-1}+3\)
Vì: x > 1 => \(\sqrt{x}-1>0\)
Áp dụng BĐT Cô-si cho 2 số dương: \(\sqrt{x}-1;\frac{2}{\sqrt{x}-1}\) , ta có:
\(\sqrt{x}-1+\frac{2}{\sqrt{x}-1}+3\ge2\sqrt{2}+3\)
Dấu = xảy ra khi: \(\sqrt{x}-1=\frac{2}{\sqrt{x}-1}\)
\(\Leftrightarrow\left(\sqrt{x}-1\right)^2=2\)
\(\Leftrightarrow\sqrt{x}-1=\sqrt{2}\)
\(\Leftrightarrow\sqrt{x}=\sqrt{2}+1\)
\(\Leftrightarrow x=2\sqrt{2}+3>1\left(tm\right)\)
Vậy: \(MinA=2\sqrt{2}+3\) tại \(x=2\sqrt{2}+3\)