Giải phương trình:
x^5=x^4+x^3+x^2+x+2
Ai làm nhanh mà đúng mình tick cho nhé!!! Mơn nhiều
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
sao bạn gửi câu hỏi đc vậy?
mk ko hỏi đc cứ duyệt mãi :((
nhìn con ma nơ canh lm j , mỏi mắt
TL :
Vì cô ta cởi áo khoác
.Hoặc và cô ta cởi áo mưa
Chúc bn hok tốt ~
Với mọi x, y
A chia hết cho B
<=> \(x^4y^3+3x^3y^3+x^2y^n⋮4x^ny^2\)
Khi đó: \(x^4;x^3;x^2⋮x^n\Rightarrow n\le2\)
\(y^3;y^n⋮y^2\Rightarrow n\ge2\)
Từ 2 điều trên => n = 2.
Sử dụng:
\(A^3+B^3+C^3-3ABC=\left(A+B+C\right)\left(A^2+B^2+C^2-AB-BC-AC\right)\) (1)
Áp dụng vào bài:
\(\left(a-1\right)^3+\left(b-2\right)^3+\left(c-3\right)^3-3\left(a-1\right)\left(b-2\right)\left(c-3\right)\)
\(=\left(a-1+b-2+c-3\right)\)[ \(\left(a-1\right)^2+\left(b-2\right)^2+\left(c-3\right)^2\)
\(+\left(a-1\right)\left(b-2\right)+\left(a-1\right)\left(c-3\right)+\left(b-2\right)\left(c-3\right)\)]
<=> \(0-3\left(a-1\right)\left(b-2\right)\left(c-3\right)=0\)
( vì \(a-1+b-2+c-3=a+b+c-6=6-6=0\))
<=> \(\left(a-1\right)\left(b-2\right)\left(c-3\right)=0\)
<=> a = 1 hoặc b = 2 hoặc c = 3.
Không mất tính tổng quát: g/s : a = 1
Khi đó: b + c =5
Ta có: \(T=\left(b-2\right)^{2n+1}+\left(c-3\right)^{2n+1}\)
\(=\left(b-2+c-3\right).A\)
\(=\left(b+c-5\right).A\)
\(=0.A=0\)
Với \(A=\left(b-2\right)^{2n}-\left(b-2\right)^{2n-1}\left(c-3\right)+\left(b-2\right)^{2n-2}\left(c-3\right)^2-...+\left(c-3\right)^{2n}\)
Tương tự b = 2; c= 3 thì T = 0.
Vậy T = 0.
Chia hình chữ nhật 4 x 3 thành 24 hình chữ nhật \(\frac{1}{2}\times1\).
Diện tích mỗi hình chữ nhật \(\frac{1}{2}\times1\) là \(\frac{1}{2}\left(cm^2\right)\)
G/s : Mỗi hình chữ nhật chỉ chứa ít hơn 3 điểm
Tổng số điểm của hình chữ nhật 3 x 4 thì sẽ < 2.24 = 48 điểm <49 điểm ( vô lí)
=> Theo nguyên lí Dirichlet sẽ tồn tại một hình chữ nhật \(\frac{1}{2}\times1\) chứa ít nhất 3 điểm trong 49 điểm đã cho.
Tam giác có 3 đỉnh nằm trong hình chữ nhật \(\frac{1}{2}\times1\) nên diện tích < \(\frac{1}{2}\left(cm^2\right)\)
Vậy ....
Tự vẽ hình nhé bạn
a) * Xét \(\Delta\)ABC có :
M là trung điểm AB
N là trung điểm BC
\(\Rightarrow\)MN là đường trung bình của \(\Delta\)ABC
\(\Rightarrow\)MN // AC hay MN // AQ ( 1 )
* Xét \(\Delta\)ABC có :
Q là trung điểm AC
N là trung điểm BC
\(\Rightarrow\)QN là đường trung bình của \(\Delta\)ABC
\(\Rightarrow\)QN // AB hay QN // AM ( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow\)Tứ giác AQNM là hình bình hành mà có một góc vuông nên nó là hình chữ nhật.
b) Dễ thấy : \(\Delta\)AIM = \(\Delta\)BNM ( c - g - c )
\(\Rightarrow\)Góc AIM = Góc BNM ( 2 góc tương ứng )
Mà hai góc này ở vị trí so le trong nên IA // BN ( 3 )
Dễ thấy : \(\Delta\)KAQ = \(\Delta\)NCQ ( c - g - c )
\(\Rightarrow\)Góc AKQ = Góc CNQ ( 2 góc tương ứng )
Mà hai góc này ở vị trí so le trong nên AK // NC ( 4 )
Từ ( 3 ) và ( 4 ) \(\Rightarrow\)Ba điểm I, A, K thẳng hàng ( theo tiên đề Ơ - clit )
c) Ta có :
AI = BN ( cmt ) và AK = NC ( cmt )
Mà BN = NC nên AI = AK
ủa hình như góc AIM với góc BNM đâu có so le trong ?