K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 9 2018

Ta co:

\(\frac{1}{\left(2n+1\right)\left(\sqrt{n}+\sqrt{n+1}\right)}=\frac{\sqrt{n+1}-\sqrt{n}}{n+1+n}< \frac{\sqrt{n+1}-\sqrt{n}}{2\sqrt{n+1}.\sqrt{n}}=\frac{1}{2}\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)

Ap vào bài toan được

\(S_n=\frac{1}{3\left(1+\sqrt{2}\right)}+\frac{1}{5\left(\sqrt{2}+\sqrt{3}\right)}+...+\frac{1}{\left(2n+1\right)\left(\sqrt{n}+\sqrt{n+1}\right)}\)

\(< \frac{1}{2}\left(\frac{1}{1}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)

\(=\frac{1}{2}\left(1-\frac{1}{\sqrt{n+1}}\right)< \frac{1}{2}\)

1 tháng 4 2020

iopdtg5 r4ytr'hfgo;hrt687y5t53434]\trvf;lkg

16 tháng 9 2018

trả lời :

tôi là con người 

k nha 

Tôi là Đỗ Hữu Lộc

16 tháng 9 2018

mk chỉ nêu cách giải thôi nha. Đây là cách mk nghĩ ra nên không đúng lắm. Bạn sắp xếp lại cho hợp lí nhá.

Đặt A=\(\dfrac{a}{2a+b+c}+\dfrac{b}{a+2b+c}+\dfrac{c}{a+b+2c}\) 

\(\Rightarrow \dfrac {1}{A}=\dfrac{2a+b+c}{a}+\dfrac{a+2b+c}{b}+\dfrac{a+b+2c}{c}\) \(=6+(\dfrac {a}{b}+\dfrac{b}{a})+(\dfrac {b}{c}+\dfrac{c}{b})+(\dfrac {a}{c}+\dfrac{c}{a})\)

vì \(a,b,c\geq 0\) Áp dụng bất đẳng thức Cauchy ta có:

\((\dfrac {a}{b}+\dfrac{b}{a})\geq 2\sqrt{\dfrac{a}{b}.\dfrac{b}{a}}\) \(=2\)

tương tự ta có:

\(6+(\dfrac {a}{b}+\dfrac{b}{a})+(\dfrac {b}{c}+\dfrac{c}{b})+(\dfrac {a}{c}+\dfrac{c}{a})\geq 6+2+2+2=12\) 

\(\Rightarrow \dfrac {1}{A}\geq 12\) (1)

theo đề bài \(A\leq \dfrac{3}{4}\) \(\Rightarrow \dfrac{1}{A}\geq \dfrac{4}{3} \Leftrightarrow \dfrac{1}{A}-\dfrac{4}{3} \geq 0\) (2)

từ(1) và(2) \(\Rightarrow \dfrac{1}{A}-\dfrac{4}{3} \geq 12-\dfrac{4}{3} \geq 0\) luôn đúng

Dấu" =" xảy ra khi a=b=c

16 tháng 9 2018

giải xong rồi cứ thấy có gì đó sai sai

16 tháng 9 2018

M A B C K H O D

Mk chỉ kịp làm câu a thôi sorry nha!

Dễ dàng chứng minh được tam giác MAB và tam giác MCD đều vuông góc tại M ( CM theo bài 7 chương I sách GK toán 9)

\(\Rightarrow Sin^2\angle MCD=Cos^2\angle MDC \)

\(\Rightarrow Sin^2\angle MAB=Cos^2\angle MBA \)

thay vào ta có: \(sin^2\angle MBA+ sin^2\angle MAB + sin^2\angle MCD+sin^2\angle MDC \)

\(=sin^2\angle MBA+ cos^2\angle MBA + cos^2\angle MDC+sin^2\angle MDC\)

\(=(sin^2\angle MBA+ cos^2\angle MBA) + (cos^2\angle MDC+sin^2\angle MDC)\)

\(= 1+1=2\)

16 tháng 9 2018

( 99 - 1 ) : 2 + 1 = 50 ( số )

làm bừa thui,ai tích mình mình tích lại

Số số hạng là : 

Có số cặp là :

50 : 2 = 25 ( cặp )

Mỗi cặp có giá trị là :

99 - 97 = 2 

Tổng dãy trên là :

25 x 2 = 50

Đáp số : 50

16 tháng 9 2018

\(M=ab+\frac{1}{a^2}+\frac{1}{b^2}\ge ab+\frac{2}{ab}\ge2\sqrt{2}\)