(Giải thích chi tiết tại sao)
Cho tam giác ABC vuông tại A. Khẳng định nào dưới đây đúng?
A. A là tâm đường tròn ngoại tiếp tam giác ABC
B. A là trọng tâm tam giác ABC
C. A là trực tâm tam giác ABC
D. A là tâm đường tròn nội tiếp tam giác ABC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Gọi tử số của phân số cần tìm là a
Theo đề, ta có: \(\dfrac{2}{3}< \dfrac{a}{30}< \dfrac{5}{6}\)
=>\(\dfrac{20}{30}< \dfrac{a}{30}< \dfrac{25}{30}\)
=>20<a<25
Vậy: Các phân số cần tìm có dạng là \(\dfrac{a}{30};20< a< 25\)
b: Gọi mẫu số của phân số cần tìm là a
Theo đề, ta có: \(\dfrac{-5}{6}< \dfrac{-15}{a}< \dfrac{-3}{4}\)
=>\(\dfrac{5}{6}>\dfrac{15}{a}>\dfrac{3}{4}\)
=>\(\dfrac{15}{18}>\dfrac{15}{a}>\dfrac{15}{20}\)
=>18<a<20
Vậy: Các phân số cần tìm có dạng là \(-\dfrac{15}{a};18< a< 20\)
a: x-y=2(x+y)
=>x-y=2x+2y
=>-x=3y
\(x-y=x:y\)
=>\(-3y-y=\dfrac{-3y}{y}=-3\)
=>\(y=\dfrac{3}{4}\)
=>\(x=-3y=-\dfrac{9}{4}\)
b) \(x+y=xy=\dfrac{x}{y}\)
Ta có: \(xy=\dfrac{x}{y}\Rightarrow xy^2=x\Rightarrow y^2=1\Rightarrow y=\pm1\)
\(y=1\Rightarrow x+1=1\cdot x\Rightarrow1=0\) (vô lý)
\(y=-1\Rightarrow x+\left(-1\right)=\left(-1\right)\cdot x\)
\(\Rightarrow x-1=-x\Rightarrow2x=1\Rightarrow x=\dfrac{1}{2}\)
Vậy: ...
\(\dfrac{1}{5^2}< \dfrac{1}{4\cdot5}=\dfrac{1}{4}-\dfrac{1}{5}\)
\(\dfrac{1}{6^2}< \dfrac{1}{5\cdot6}=\dfrac{1}{5}-\dfrac{1}{6}\)
...
\(\dfrac{1}{100^2}< \dfrac{1}{99\cdot100}=\dfrac{1}{99}-\dfrac{1}{100}\)
Do đó: \(\dfrac{1}{5^2}+\dfrac{1}{6^2}+...+\dfrac{1}{100^2}< \dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
=>\(\dfrac{1}{5^2}+\dfrac{1}{6^2}+...+\dfrac{1}{100^2}< \dfrac{1}{4}\)
\(\dfrac{1}{5^2}>\dfrac{1}{5\cdot6}=\dfrac{1}{5}-\dfrac{1}{6}\)
\(\dfrac{1}{6^2}>\dfrac{1}{6\cdot7}=\dfrac{1}{6}-\dfrac{1}{7}\)
...
\(\dfrac{1}{100^2}>\dfrac{1}{100\cdot101}=\dfrac{1}{100}-\dfrac{1}{101}\)
Do đó: \(\dfrac{1}{5^2}+\dfrac{1}{6^2}+...+\dfrac{1}{100^2}>\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+...+\dfrac{1}{100}-\dfrac{1}{101}\)
=>\(\dfrac{1}{5^2}+...+\dfrac{1}{100^2}>\dfrac{1}{5}\)
mà 1/5>1/6
nên \(\dfrac{1}{5^2}+\dfrac{1}{6^2}+...+\dfrac{1}{100^2}>\dfrac{1}{6}\)
Do đó: \(\dfrac{1}{6}< \dfrac{1}{5^2}+\dfrac{1}{6^2}+...+\dfrac{1}{100^2}< \dfrac{1}{4}\)
+, Với \(a=0;b\ne c\ne0\), khi đó:
\(0^2=b^5-b^4c\)
\(\Rightarrow b^4\left(b-c\right)=0\)
\(\Rightarrow b-c=0\) (vì \(b\ne0\))
\(\Rightarrow b=c\) (loại)
+, Với \(b=0;a\ne c\ne0\), khi đó:
\(a^2=0^5-0^4.c\)
\(\Rightarrow a^2=0\Rightarrow a=0\) (loại)
+, Với \(c=0;a\ne b\ne0\), khi đó:
\(a^2=b^5-b^4.0\)
\(\Rightarrow a^2=b^5\)
Mà trong ba số a, b, c có 1 số dương, 1 số âm và 1 số bằng 0 nên ta có các TH sau:
*) Nếu \(a>0;b< 0\) thì:
\(a^2>0;b^5< 0\Rightarrow a^2\ne b^5\) (loại)
*) Nếu \(a< 0;b>0\Rightarrow a^2>0;b^5>0\) (tm)
Vậy số 0 là c; số dương là b; số âm là a.
Áp dụng được luôn nha bạn, tại nếu đã là định lí được ghi rõ trong SGK thì được áp dụng thoải mái
Cái này là sử dụng luôn em ơi, còn việc chứng minh là nằm trên lí thuyết của bài giảng rồi em.
Gọi số đó có dạng: \(\overline{abc}\)
Khi thêm số 1 vào đằng trước số đó thì ta được số: \(\overline{1abc}\)
Khi thêm số 1 vào đằng sau số đó thì ta được số: \(\overline{abc1}\)
Mà số được thêm số 1 vào đằng sau lớn hơn số được thêm số 1 vào đằng trước 1107 đơn vị nên ta có:
\(\overline{abc1}-\overline{1abc}=1107\)
\(\left(\overline{abc}\cdot10+1\right)-\left(1000+\overline{abc}\right)=1107\)
\(\overline{abc}\cdot10+1-1000+\overline{abc}=1107\)
\(9\cdot\overline{abc}-999=1107\)
\(9\cdot\overline{abc}=1107+999=2106\)
\(\overline{abc}=\dfrac{2106}{9}\)
\(\overline{abc}=234\)
Vậy: ..
Giải:
Từ 1 đến 9 có: (9 - 1) : 1 + 1 = 9 (số)
Từ trang 1 đến trang 9 cần: 1 x 9 = 9 (chữ số)
Từ 10 đến 99 có: (94 - 10) : 1 + 1 = 85 (số)
Từ trang 10 đến trang 99 cần: 2 x 85 = 170 (chữ số)
Để đánh cuốn sách dày 94 trang thì cần dùng số chữ số là:
9 + 170 = 179 (chữ số)
Kết luận: Để đánh trang sách dày 94 trang cần 179 chữ số
A là trực tâm của tam giác ABC vì A là giao của 2 đường cao AB và AC
Chọn C
Xét ΔABC có
AC là đường cao ứng với cạnh AB
AB là đường cao ứng với cạnh AC
AC cắt AB tại A
Do đó: A là trực tâm của ΔABC