K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 11 2019

\(\frac{x^3+2x^2+15}{x+3}=\frac{\left(x^2-x+3\right)\left(x+3\right)+6}{x+3}=x^2-x+3+\frac{6}{x+3}\)( x khác -3)

Vậy để \(\left(x^3+2x^2+15\right)⋮\left(x+3\right)\)thì x+3 là Ư(6)

x+3-112-23-36-6
x-4-2-1-50-63-9

Kết luận

5 tháng 11 2019

Ta có : \(x^3+2x^2+15=x^2\left(x+3\right)-x\left(x+3\right)+3\left(x+3\right)+6\)

\(=\left(x+3\right)\left(x^2-x+3\right)+6\)

Để đa thức(x3 +2x2+15)chia hết cho đa thức (x+3) thì  \(6⋮\left(x+3\right)\Rightarrow x+3\inƯ\left(6\right)=\left\{1;-1;2;-2;3;-3;6;-6\right\}\)

\(\Rightarrow x\in\left\{-2;-4;-1;-5;0;-6;3;-9\right\}\)

Vậy......

5 tháng 11 2019

Bài nào đấy hải ơi .Trả lời tao bài 5 đi tao đăng rồi đấy tên là Lưng

5 tháng 11 2019

Bài 5 ntn

5 tháng 11 2019

nghiện garena ff à cho xin kb nick được ko ạ có thể ghi số id

5 tháng 11 2019

Với x, y, z >0, Có: \(x+y+z\ge3\sqrt[3]{xyz}=3\)

=> Đặt: x + y+z =t => \(t\ge3\)

\(A=\frac{x^2}{1+x}+\frac{y^2}{1+y}+\frac{z^2}{1+z}\ge\frac{\left(x+y+z\right)^2}{3+x+y+z}\)

\(=\frac{t^2}{t+3}=t-3+\frac{9}{t+3}\)

\(=\left(\frac{t+3}{4}+\frac{9}{t+3}\right)+\frac{3\left(t+3\right)}{4}-6\ge2\sqrt{\frac{t+3}{4}.\frac{9}{t+3}}+3.\frac{\left(3+3\right)}{4}-6\)

\(=2.\frac{3}{2}+\frac{9}{2}-6=\frac{3}{2}\)

"=" xảy ra <=> x = y = z =1

5 tháng 11 2019

lên mạng đấy nhé bạn

5 tháng 11 2019

\(x^3-y^3-36xy\)

\(=\left(x-y\right)^3+3xy\left(x-y\right)-36xy\)

\(=12^3+36xy-36xy\)

\(=1728\)