K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(7m^25dm^2=7,05m^2\)

5 tạ 30kg=5,3 tạ

20 tháng 4 2024

7m2 5dm2= 7,05m2

20 tháng 4 2024

\(\dfrac{5}{12}=\dfrac{5\times11}{12\times11}=\dfrac{55}{132}\)

\(\dfrac{6}{11}=\dfrac{6\times12}{11\times12}=\dfrac{72}{132}\)

25 tháng 4 2024

s là nam n là bắc

 

 

 

 

 

20 tháng 4 2024

GGiúp mik và ạ

20 tháng 4 2024

3 - 4x(25 - 2x) = 8x² + x - 300

3 - 100x + 8x² = 8x² + x - 300

-100x + 8x² - 8x² - x = -300 - 3

-101x = -303

x = -303 : (-101)

x = 3

Vậy S = {3}

ĐKXĐ: \(x\notin\left\{0;3;-3;-\dfrac{3}{2}\right\}\)

\(\dfrac{x^2-6}{x-3}+\dfrac{x^2+3x}{2x+3}\left(\dfrac{x}{x^2-9}-\dfrac{x+3}{x\left(x-3\right)}\right)\)

\(=\dfrac{x^2-6}{x-3}+\dfrac{x\left(x+3\right)}{2x+3}\cdot\left(\dfrac{x}{\left(x-3\right)\left(x+3\right)}-\dfrac{x+3}{x\left(x-3\right)}\right)\)

\(=\dfrac{x^2-6}{x-3}+\dfrac{x\left(x+3\right)}{2x+3}\cdot\dfrac{x^2-\left(x+3\right)^2}{x\left(x-3\right)\left(x+3\right)}\)

\(=\dfrac{x^2-6}{x-3}+\dfrac{x^2-x^2-6x-9}{\left(2x+3\right)\left(x-3\right)}\)

\(=\dfrac{x^2-6}{x-3}-\dfrac{3}{x-3}=\dfrac{x^2-9}{x-3}=x+3\)

a: Xét ΔCED vuông tại E và ΔCFD vuông tại F có

CD chung

\(\widehat{ECD}=\widehat{FCD}\)

Do đó: ΔCED=ΔCFD

=>CE=CF: DE=DF

Xét ΔCEK vuông tại E và ΔCFH vuông tại F có

CE=CF
\(\widehat{ECK}\) chung

Do đó: ΔCEK=ΔCFH

b: Xét ΔDEH vuông tại E và ΔDFK vuông tại F có

DE=DF

\(\widehat{EDH}=\widehat{FDK}\)

Do đó: ΔDEH=ΔDFK

=>DH=DK 

=>D nằm trên đường trung trực của HK(1)

Ta có: CH=CK

=>C nằm trên đường trung trực của HK(2)

Ta có: MH=MK

=>M nằm trên đường trung trực của HK(3)

Từ (1),(2),(3) suy ra C,D,M thẳng hàng

a: \(\text{Δ}=\left(2m+1\right)^2-4\cdot\left(m^2+\dfrac{1}{2}\right)\)

\(=4m^2+4m+1-4m^2-2=4m-1\)

Để phương trình có hai nghiệm phân biệt thì Δ>0

=>4m-1>0

=>m>1/4
b: Theo Vi-et, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=2m+1\\x_1x_2=\dfrac{c}{a}=m^2+\dfrac{1}{2}\end{matrix}\right.\)

\(M=\left(x_1-1\right)\left(x_2-1\right)\)

\(=x_1x_2-\left(x_1+x_2\right)+1\)

\(=m^2+\dfrac{1}{2}-2m-1+1\)

\(=m^2-2m+\dfrac{1}{2}\)

\(=m^2-2m+1-\dfrac{1}{2}=\left(m-1\right)^2-\dfrac{1}{2}>=-\dfrac{1}{2}\forall m\)

Dấu '=' xảy ra khi m-1=0

=>m=1(nhận