K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) 72018 = 72016 . 72 = 74 . 504 . 49 = ................1 . 49 =................9

Chữ số tận cùng của số này là 9.

b) 20172018 = 20172016 . 20172 = 20174 . 504 . ...........................9 = ................1 . ..............9 =................9

Chữ số tận cùng của số này là 9.

9 tháng 10 2018

Mình mới lớp 7 chưa học đồng dư. Nên đọc lý thuyết có phần không hiểu lắm. Nên có gì sai sót trong sử dụng đồng dư mong bạn thông cảm! Cảm ơn bạn!

Ta có:

\(7^{2018}=7^{2016+2}=7^{4k+2}=2401^k.49\equiv49\left(mod9\right)\Rightarrow7^{2018}\) có tận cùng là 9

\(2017^{2018}=2017^{2016+2}=2017^{4k+2}=2017^{4k}.2017^2\equiv2017^2\left(mod9\right)\Rightarrow2017^{2018}\) có tận cùng là 9

9 tháng 10 2018

a 2222244444.2222266666=493841975160403704 

b 162849327^2=26519903304352929

tk cho mk nha

9 tháng 10 2018

\(a,2222244444\cdot2222266666=49384197516043704.\)

\(b,162849327\cdot2=26519903304352929.\)

Học tốt nhé bn.

8 tháng 10 2018

Gọi I và O là tâm các hình chữ nhật BDEH và CDFK

Ta có: góc B1 = góc D1 và góc C1 = góc D( t/c hình chữ nhật )

mà góc B1 = góc C1 (gt) nên góc B1 = góc D1 = góc C1 = góc D2

Do đó \(BE//DK\) và \(DH//CA\)

=> AIDO là hình bình hành nên AO = ID; mà HI = ID ( t/c hcn )

Do đó AO = HI; ta lại có \(AO//HI\)

=> AOIH là hình bình hành nên AH // IO và AH = IO (1)

- CM tương tự, AIOK là hình bình hành nên AK // IO và AK = IO (2)

- Từ (1) và (2) suy ra H,A,K thẳng hàng và AH = AK

=> Kết luận...

Bạn oy, A là trung điểm của HK sao lại GH được? 

8 tháng 10 2018

Bạn vẽ hình ra thử đi . Nếu là HK thì là đường gấp khúc .

B C D E G A H F I K

24 tháng 4 2019

b) Dùng phương pháp đặt ẩn phụ:

Đặt y - x = a; z - y = b suy ra \(a+b=y-x+z-y=z-x\)

\(x^2y^2a+y^2z^2b-z^2x^2\left(a+b\right)=\left(x^2y^2a-z^2x^2a\right)+\left(y^2z^2b-z^2x^2b\right)\)

\(=x^2a\left(y^2-z^2\right)+z^2b\left(y^2-x^2\right)=x^2\left(y-x\right)\left(y-z\right)\left(y+z\right)+z^2\left(z-y\right)\left(y-x\right)\left(x+y\right)\)

\(=x^2\left(y-x\right)\left(y-z\right)\left(y+z\right)-z^2\left(y-z\right)\left(y-x\right)\left(x+y\right)\)

\(=\left(y-x\right)\left(y-z\right)\left[x^2\left(y+z\right)-z^2\left(x+y\right)\right]\)

\(=\left(y-x\right)\left(y-z\right)\left(x^2y+x^2z-z^2x-z^2y\right)\)

\(=\left(y-x\right)\left(y-z\right)\left[y\left(x^2-z^2\right)+xz\left(x-z\right)\right]\)

\(=\left(y-x\right)\left(y-z\right)\left[y\left(x-z\right)\left(x+z\right)+xz\left(x-z\right)\right]\)

\(=\left(y-x\right)\left(y-z\right)\left(x-z\right)\left(xy+yz+zx\right)\)

8 tháng 10 2018

\(a)\)\(\left(x^2+y^2-5\right)^2-4x^2y^2-16xy-16\)

\(=\)\(\left(x^2+y^2-5\right)^2-\left(4x^2y^2+16xy+16\right)\)

\(=\)\(\left(x^2+y^2-5\right)^2-\left(2xy+4\right)^2\)

\(=\)\(\left(x^2-2xy+y^2-5+4\right)\left(x^2+2xy+y^2-5-4\right)\)

\(=\)\(\left[\left(x-y\right)^2-1\right].\left[\left(x+y\right)^2-9\right]\)

\(=\)\(\left(x-y-1\right)\left(x-y+1\right)\left(x+y-9\right)\left(x+y+9\right)\)

Chúc bạn học tốt ~ 

8 tháng 10 2018

\(55^{n+1}-55^n=55^n.55-55^n=55^n\left(55-1\right)=54.55^n=>chiahetcho54\)

\(55^{n+1}-55^n=55^n.55-55^n=55^n\left(55-1\right)=55^n.54⋮54\)

k mk nha

cảm ơn

7 tháng 10 2018

giangtranthe601@gmail.com

7 tháng 10 2018

23012004

7 tháng 10 2018

tui choi nro thoi ko choi free fire

10 tháng 11 2021

x(y+z)^2 - y(z-x)^2 +z(x+y)^2 - x^3 + y^3 - z^3 - 4xyz

=xy^2+2xyz+xz^2-yz^2+2xyz-x^2y+x^2z+2xyz+zy^2-x^3+y^3-z^3-4xyz

=xy^2+xz^2-yz^2-x^2y+x^2z+y^2z-x^3+y^3-z^3+2xyz

=(xy^2+2xyz+xz^2)-x^3-(yz^2+2xyz+x^2y)+y^3+(x^2z+2xyz+y^2z)-z^3

=x[(y+z)^2-x^2)-y[(z+x)^2-y^2]+z[(x+y)^2-z^2]

=x(-x+y+z)(x+y+z)-y(x-y+z)(x+y+z)+z(x+y-z)(x+y+z)

=(x+y+z)[-x^2+xy+xz-xy+y^2-yz+xz+yz-z^2]

=(x+y+z)[-x(x-y-z)-y(x-y-z)+z(x-y-z)]

=(x+y+z)(x-y-z)(z-x-y)