K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(\text{Δ}=\left(2m+1\right)^2-4\cdot\left(m^2+\dfrac{1}{2}\right)\)

\(=4m^2+4m+1-4m^2-2=4m-1\)

Để phương trình có hai nghiệm phân biệt thì Δ>0

=>4m-1>0

=>m>1/4
b: Theo Vi-et, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=2m+1\\x_1x_2=\dfrac{c}{a}=m^2+\dfrac{1}{2}\end{matrix}\right.\)

\(M=\left(x_1-1\right)\left(x_2-1\right)\)

\(=x_1x_2-\left(x_1+x_2\right)+1\)

\(=m^2+\dfrac{1}{2}-2m-1+1\)

\(=m^2-2m+\dfrac{1}{2}\)

\(=m^2-2m+1-\dfrac{1}{2}=\left(m-1\right)^2-\dfrac{1}{2}>=-\dfrac{1}{2}\forall m\)

Dấu '=' xảy ra khi m-1=0

=>m=1(nhận

a: Xét ΔAMB và ΔAMC có

AM chung

MB=MC

AB=AC

Do đó: ΔAMB=ΔAMC

=>\(\widehat{BAM}=\widehat{CAM}\)

Xét ΔAHM vuông tại H và ΔAKM vuông tại K có

AM chung

\(\widehat{HAM}=\widehat{KAM}\)

Do đó: ΔAHM=ΔAKM

=>MH=MK

b: Ta có: MH=MK

mà MK<MC(ΔMKC vuông tại K)

nên MH<MC

c: ΔKAM vuông tại K

=>AM là cạnh lớn nhất trong ΔKAM

=>MK<AM

19 tháng 4 2024

1+mấy=bao nhiêu 

tick nha

20 tháng 4 2024

????????????????

Tỉ số giữa số sách ở ngăn trên lúc đầu so với tổng số sách là \(\dfrac{1}{4+1}=\dfrac{1}{5}\)

Tỉ số giữa số sách ở ngăn trên lúc sau so với tổng số sách là \(\dfrac{1}{5+1}=\dfrac{1}{6}\)

Tổng số sách là \(4:\left(\dfrac{1}{5}-\dfrac{1}{6}\right)=4:\dfrac{1}{30}=120\left(quyển\right)\)

loading...

 

a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC

AH chung

Do đó: ΔAHB=ΔAHC

=>\(\widehat{HAB}=\widehat{HAC}\)

mà \(\widehat{DHA}=\widehat{HAC}\)(DH//AC)

nên \(\widehat{DHA}=\widehat{DAH}\)

=>ΔDAH cân tại D

b: Ta có: \(\widehat{DHA}+\widehat{DHB}=90^0\)

\(\widehat{DAH}+\widehat{DBH}=90^0\)

mà \(\widehat{DHA}=\widehat{DAH}\)(ΔDAH cân tại D)

nên \(\widehat{DHB}=\widehat{DBH}\)

=>DH=DB

=>DA=DB

=>D là trung điểm của AB

Xét ΔABC có

AH,CD là các đường trung tuyến

AH cắt CD tại G

Do đó: G là trọng tâm của ΔABC

c: Xét ΔABC có

G là trọng tâm

Do đó: BG cắt AC tại trung điểm K của AC

TA có: 

mà AB=AC

nên AD=DB=AK=KC

Xét ΔDBC và ΔKCB có

DB=KC

BC chung

Do đó: ΔDBC=ΔKCB

=>DC=BK

Xét ΔBAC có 

G là trọng tâm

BK là đường trung tuyến

Do đó: 

=>2BK=3BG

Trên tia đối của tia KB, lấy E sao cho KB=KE

Xét ΔKAE và ΔKCB có

KA=KC

(hai góc đối đỉnh)

KE=KB

Do đó: ΔKAE=ΔKCB

=>AE=CB 

AH+3BG=AH+2BK=AH+BE<AB+BE<(AB+AE+AB)=AB+AC+BC

 

a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC

AH chung

Do đó: ΔAHB=ΔAHC

=>\(\widehat{HAB}=\widehat{HAC}\)

mà \(\widehat{DHA}=\widehat{HAC}\)(DH//AC)

nên \(\widehat{DHA}=\widehat{DAH}\)

=>ΔDAH cân tại D

b: Ta có: \(\widehat{DHA}+\widehat{DHB}=90^0\)

\(\widehat{DAH}+\widehat{DBH}=90^0\)

mà \(\widehat{DHA}=\widehat{DAH}\)(ΔDAH cân tại D)

nên \(\widehat{DHB}=\widehat{DBH}\)

=>DH=DB

=>DA=DB

=>D là trung điểm của AB

Xét ΔABC có

AH,CD là các đường trung tuyến

AH cắt CD tại G

Do đó: G là trọng tâm của ΔABC

c: Xét ΔABC có

G là trọng tâm

Do đó: BG cắt AC tại trung điểm K của AC

TA có: \(AD=DB=\dfrac{AB}{2}\)

\(AK=KC=\dfrac{AC}{2}\)

mà AB=AC

nên AD=DB=AK=KC

Xét ΔDBC và ΔKCB có

DB=KC

\(\widehat{DBC}=\widehat{KCB}\)

BC chung

Do đó: ΔDBC=ΔKCB

=>DC=BK

Xét ΔBAC có 

G là trọng tâm

BK là đường trung tuyến

Do đó: \(\dfrac{BG}{BK}=\dfrac{2}{3}\)

=>2BK=3BG

Trên tia đối của tia KB, lấy E sao cho KB=KE

Xét ΔKAE và ΔKCB có

KA=KC

\(\widehat{AKE}=\widehat{CKB}\)(hai góc đối đỉnh)

KE=KB

Do đó: ΔKAE=ΔKCB

=>AE=CB 

AH+3BG=AH+2BK=AH+BE<AB+BE<(AB+AE+AB)=AB+AC+BC