cho tứ giác abcd có ac vuong góc với bd. kẻ bh vuông góc với cd(h thuộc cd)
a) biết ab//cd ,bh=4cm ,bd=5cm ,tính ac ?
b) biết ab=1/2cd;ao=1/3ac diện tích tam giác aob bằng 4cm2 tính diện tích tam giac abc
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3x-4x^2-\frac{1}{4}x+2014\)
\(=-\left[\left(2x\right)^2-4x+1+x+\frac{1}{4}x-2015\right]\)
\(=\left[\left(2x-1\right)^2-\left(2x-1\right)\frac{2}{4}x+1-2015\right]\)
Vậy Max của biểu thức trên là 2014 khi x = 1/2
2 góc đáy ABC = ACB = (180 - 108) : 2 = 36 ( gt)
Hạ đường cao AH; vì ABC là t.g cân tại A => AH là trung tuyến => HB = HC => BC = 2HC.
Trong \(\Delta\) vuông AHC có: HC/AC =cos36o
=>2HC/AC=cos36o
<=> BC/AC = 2cos36o
Gọi số thứ nhất là x
=> Số thứ 2 là 20/9 x
Thương của số thứ nhất và 3 là 1/3 x
Thương của số thứ 2 và 4 là 5/9x
Theo bài ra ta có PT:
1/3 x + 4= 5/9 x
<=> −2/9−29 x = -4
<=> x = 18
Số thứ 2 là:
18. 20/9 = 40
Vậy số thứ 1 là 18, số thứ 2 là 40
#Châu's ngốc
Một chiếc xe tải đi từ điểm A đến điểm B, quãng đường dài 172 km. Sau khi xe tải xuất phát được 1 giờ, một chiếc xe khách bắt đầu đi từ B về A và gặp xe tải sau khi đã đi được 1 giờ 36 phút. Tính vận tốc mỗi xe biết rằng mỗi giờ xe khách đi nhanh hơn xe tải 13 km.
A B C H D
Theo tính chất của \(\Delta\) vuông ta có:\(AH^2=BH.HC\)
Theo tính chất phân giác ta có: \(\frac{AD}{DC}=\frac{AH}{HC}\)
\(\Leftrightarrow\frac{AD^2}{DC^2}=\frac{AH^2}{HC^2}=\frac{HB.HC}{HC^2}=\frac{HB}{HC}\left(đpcm\right)\)
Ta có: \(A=1-\left(\frac{1}{x^2}+\frac{1}{y^2}\right)+\frac{1}{x^2y^2}\)
\(=1-\frac{\left(x+y\right)^2-2xy}{x^2y^2}+\frac{1}{x^2y^2}\)
\(=1-\frac{1}{x^2y^2}+\frac{2}{xy}+\frac{1}{x^2y^2}\)
\(=1+\frac{2}{xy}\)
Mà: \(x,y>0;x+y=1\)
Áp dụng BĐT Cosi ta có:
\(1=\left(x+y\right)^2\ge4xy\Rightarrow xy\le\frac{1}{4}\)
Dấu " = " xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)
Lúc đó: \(A=1+\frac{2}{xy}\ge1+\frac{2}{\frac{1}{4}}=9\)
Vậy \(Min_A=9\Leftrightarrow x=y=\frac{1}{2}\)
Tặng lì xì năm ms nè nhưng thôi tớ giải đc rồi dù sao cảm ơn cậu :))) @huyền
Cách khác:V theo cách của cô tớ hơi lạ =_=:)))
Ta có x + y = 1 => \(\hept{\begin{cases}x-1=-y\\y-1=-x\end{cases}}\Rightarrow\) tương đương vs biểu thức sau :
\(\frac{\left(x^2-1\right)\left(y^2-1\right)}{x^2y^2}=\frac{\left(x-1\right)\left(x+1\right)\left(y-1\right)\left(y+1\right)}{x^2y^2}\)
\(=\frac{\left(-y\right)\left(x+1\right)\left(-x\right)\left(y+1\right)}{x^2y^2}=\frac{\left(x+1\right)\left(y+1\right)=xy+x+y+1}{xy}=1+\frac{2}{xy}\)
Mà 1 = x + y và x + y > 2 Vxy => (x + y) 2 > 4xy do đó 1 = (x+y)2> 4xy
\(\frac{\Rightarrow1}{4xy}\ge\frac{1}{\left(x+y\right)^2}\Rightarrow\frac{1}{xy}\ge\frac{4}{\left(x+y\right)^2}\Rightarrow\frac{2}{xy}\ge8\Rightarrow\)
MinA = 9 khi x=y=1/2
Cho abc(a+b+c) khác 0. Giải phương trình ẩn x:
(x-a)/bc+(x-b)/ac+(x-c)/ab=1/2(1/a+1/b+1/c)
.
Đặt \(x^2+x=t\)
Khi đó phương trình tương đương với:
\(t-\frac{4}{t}=3\)
\(\Rightarrow t^2-3t-4=0\)
\(\Leftrightarrow\left(t^2-1\right)-\left(3t+3\right)=0\)
\(\Leftrightarrow\left(t-1\right)\left(t+1\right)-3\left(t+1\right)=0\)
\(\Leftrightarrow\left(t+1\right)\left(t-4\right)=0\)
\(\Rightarrow t=-1;t=4\)
Thay vào làm nốt